
1 December 1997 Delphi Informant

December 1997, Volume 3, Number 12

Threads Simplified
Untangling a Gnarly Topic

Cover Art By: Tom McKeith

ON THE COVER
6 Threads Simplified � Jon Jacobs
Thread programming is considered a knotty affair, and is even avoided
by some developers as an “advanced” technique. With any luck, Delphi
3 — and Mr Jacobs’ clear introduction to the topic — should untangle
this misconception.

FEATURES
12 On the Net
FTP Programming � Howard Schutzman
In the last six months, Gregory Lee has tackled the Internet-
communication topics of SMTP, POP, and MIME. Now Mr Schutzman
turns to FTP and Windows sockets programming.

22 Sights & Sounds
Quick on the Draw � Robert Vivrette
Inherit and override. Mr Vivrette demonstrates how quickly — given the
extraordinary RAD qualities of Delphi — a full-fledged drawing program
can take Shape.

28 The API Calls
Using the BDE API: Part II � Bill Todd
The Borland Database Engine exposes an API for Delphi programmers to
put to use, but it’s woefully undocumented. Mr Todd takes care of that
problem with his two-article series.

32 DBNavigator
Combine and Conquer � Cary Jensen, Ph.D.
They’re new, they’re handy, and you may very well have missed
them in the flood of new Delphi 3 features. Dr Jensen introduces
component templates and provides guidelines for their use.

REVIEWS
35 Mastering Delphi 3

Book Review by Alan C. Moore, Ph.D.

DEPARTMENTS

2 Symposium Guest Editorial by Alan C. Moore, Ph.D.
3 Delphi Tools
5 Newsline
36 File | New by Richard Wagner

Symposium
Project JEDI

To a large extent, Windows is built on a series of dynamic-link libraries (DLLs), including old workhorses
like USER.DLL and GUI.DLL. But Windows doesn’t stand still. Even as work is proceeding on the succes-

sor to Windows 95, new functionality is being introduced. Microsoft makes this functionality available to
programmers through various application programming interfaces (APIs) to these DLLs. Generally, these
are presented in various software developer kits (SDKs).
Unfortunately, most of this new functionality is initially
available only in C, and must be converted to Pascal for use
by Delphi programmers. While Borland has done its best,
the period from the initial appearance of a new API/SDK to
its translation into Delphi seems interminable for many
developers, particularly those who must stay on the cutting
edge of new technologies.

It’s time for a revolution. Great revolutions can begin with a
small complaint — particularly if that complaint resonates
with a larger group. What about the JEDI movement?

In the Beginning ...
It was a quiet Friday at the end of September, and I was
engaged in a familiar activity: reading through posts to the
COBB DDJ-Thread (Delphi Developers Journal), which I
help moderate. I didn’t pay much attention to the initial
message that spoke of the long waiting period until a new
API becomes available in Delphi, but soon quite a few
others joined in and echoed the concerns. One or two
spoke of deserting Delphi for C++ to have quicker access,
suggesting that Borland needed to wake up, etc.

Then the focus of the thread turned to what we could do. At
that point I had to jump in. I suggested that it was “pretty much
up to us, as developers, to fill in these gaps ... Perhaps if more of
us would join in, and then make the translations ... available on
the Web, we could solve the problem ourselves.” Others agreed
this was the way to go. As a result, the DDJ-Thread was pretty
much taken over for the weekend by a zealous group of develop-
ers determined to do something about the problem.

At the end of the weekend it became clear that we would
need our own list server. Someone involved in the discussion
volunteered to set the whole thing up. Another person, Tim
Hayes, emerged as the main coordinator. He kept everyone
informed, provided daily updates to the whole group, and
2 December 1997 Delphi Informant
was eventually elected to head the Administrative Group (of
which I too became a member). After much debate we agreed
upon a name: JEDI (for Joint Endeavor of Delphi
Innovators). There were other debates during the first week
regarding the organization of the project, legal issues,
Borland’s possible involvement, and style guides for code and
Help files.

On Saturday an IRC (Internet Relay Chat) channel was
made available and a dozen or more JEDI enthusiasts
joined in from all over the world. An organization was
beginning to emerge; there would be a conversion team
who would convert the C headers to Delphi and possibly
develop classes and components, testers to catch the bugs,
Help-file creators to provide the needed documentation,
and Web-site developers to make sure the fruits of Project
JEDI could be presented to the Delphi community in an
exciting and usable fashion.

At this point (some ten days later) Project JEDI is still in its
infancy. It could die or flourish. Its beginnings, however,
remind us of some important lessons: no single company, not
even Borland International, can provide everything we might
need or desire in programming tools; developers can be a
particularly resourceful and generous group who can accom-
plish great tasks when they put their minds to it; and finally,
sometimes it does make sense to lodge a complaint!

On the Horizon
Next month we’ll examine Delphi 3 packages. In March,
we’ll return to a further discussion of Delphi and the APIs.
To find out more about Project JEDI, you can subscribe to
the JEDI list-server by sending e-mail to listserv@pure-
science.com with the message SUBSCRIBE JEDI in the
main body. Or you can write me at acmdoc@aol.com. ∆

— Alan C. Moore, Ph.D.

3 December 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Cyrenesoft Announces Database Component Set for Delphi

Parity Software Announce

HHiigghh PPeerrffoorrmmaannccee
DDeellpphhii 33 PPrrooggrraammmmiinngg

Don Taylor, et al.
Coriolis Group Books

IISSBBNN:: 1-57610-179-7
PPrriiccee:: US$49.99

(635 pages, CD-ROM)
PPhhoonnee:: (602) 483-0193
Cyrenesoft has released
Genesis 2.3 for Delphi, a
suite of database components
such as the Data Doctor,
enabling developers to pro-
gram database applications
faster and with greater ease.

Developers can drop the
Data Doctor into their appli-
cation, where it will automat-
ically run at intervals. It auto-
matically packs deleted
records from tables and recre-
ates indexes, saving disk space
and increasing application-
index performance.

Genesis also features com-
ponents such as the
Intelligrid component, a
data-aware grid that allows
developers to embed any
data-aware component, even
custom components — such
as special combo boxes.

Working in conjunction
with the Intelligrid is a sort-
edit box and search-combo
box that changes the sort
order of any data-aware grid,
and has a special feature that
allows the end user to specify
more than one key.

Genesis also features
leases Remember All Suite

s ChatterBocx/SAPI
csNavigator, a replacement
navigator component that
can be oriented vertically or
horizontally. csNavigator
allows developers to change
the glyphs, and has two
added buttons that permit
the end user to find a record
through a dialog box and
print the current record in
an automatically formatted
report.

Other components include
csDateTimeCombo, a data-
aware calendar that works
with date and time fields;
 Comprising
csCalculatorCombo, a drop-
down calculator; several
lookup combo boxes that
correct bugs in the Delphi
VCL; dialog components,
including memo and graph-
ic dialog boxes; and more.
Both data-aware and non
data-aware versions of sever-
al components are included.

Cyrenesoft
Price: US$149 for source code; US$99
for DCU; US$45 for mini-packs.
Phone: (770) 838-0404
Web Site: http://www.cyrenesoft.com
Parity Software announced
ChatterBocx/SAPI, an
ActiveX control that can be
used in Delphi, Visual C++,
and Visual Basic. Text-to-
speech (TTS) technologies
based on Microsoft’s Speech
API are also supported.
ChatterBocx/SAPI allows
users to build telephony
applications based on
VoiceBocx control and desk-
top applications that use
multimedia loudspeakers for
speech output. It synthesizes
speech from text presented as
a string of ASCII characters,
either in a text file or from a
string passed as an argument
from a user’s program code.
In a telephony application,
the speech is generated on a
telephone line and heard by
the human caller; in a desk-
top application, the speech is
generated through loud-
speakers.

Parity Software
Price: Call for pricing.
Phone: (415) 332-5656
Web Site: http://www.paritysw.com
Mountaintop Systems Re
Mountaintop Systems has

released Remember All Suite

Comprising, which includes
two components aimed at

simplifying the entry and
storage of user-preference
and program-Configuration
information.

TRememPanel, a descen-
dant of TPanel, allows for
the quick preparation for
editing and automatic
storage of a large range of
user-preference options. It
will also hold a Page-
Control or tabbed note-
book, which in turn holds
other setup recording con-
trols (edit boxes, check-
boxes, etc.). TRememPanel
automatically saves changes
made by the user to an .INI
file, restoring them at start-
up. Multiple configurations
saved to different .INI files
are handled with a single
line of code.

The EditFields compo-
nent adds flexibility by
allowing users to enter text,
dates, times, integers,
floats, currency, etc., auto-
matically validating and
storing their entries.

Mountaintop Systems
Price: US$38; US$65 with source
code.
Phone: 011 61 2 9541 1348
Web Site: http://www.ozemail.com.-
au/~mtntop

4 December 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

HyperAct Ships WebApp 1.0
Digital Zinnia Studios a
Digital Zinnia Studios

and Modern Medium Inc.
announced Conduit, a DLL
that sends and receive files
to a location on the Internet
using FTP.

Using Conduit, developers
can Internet-enable
Windows applications such
as Delphi and Microsoft
Access, Excel, and Word.
Additional features include
automatic updates of Web
content controlled from an
application, integration of
file communication on the
Internet in an application,
sharing of data over the
Internet from within an
application, distribution of
data on the Internet con-
trolled from an application,
and creation of Windows-
based order-entry systems or
Internet sales systems. API
functions provided by
Conduit include sending,
downloading, and removing
Internet files, and getting a
file list and adding and
SupraSoft Offers Crysta
nd Modern Medium Inc. A
removing Internet directo-
ries. Conduit will communi-
cate with servers running
Windows NT, UNIX,
Novell, or Mac OS.

Digital Zinnia Studios and
Modern Medium Inc.
Price: Single-user license, US$295;
20-user license within one application,
l Reports Support
nnounce Conduit
US$495; 50-user license within one
application, US$795; unlimited users
within one organization, US$995;
unlimited distribution within one appli-
cation, US$1,495.
Phone: (541) 343-4281
Web Site: http://www.modmed.com/-
conduit/conduit.shtml
HyperAct, Inc. released
WebApp 1.0, the framework
for Web-server applications
development using Delphi 2
and 3 and C++Builder.

Features in WebApp
include server indepen-
dence; automatic session-
management; HTML tem-
plate support; transparent,
cookies-based, session-state
management; and Delphi 3
WebModules compatibility.

WebApp ships with native
support for Microsoft
Internet Information Server
(ISAPI), Microsoft Personal
Web Server (ISAPI),
Netscape FastTrack (NSAPI),
O’Reilly WebSite and
WebSite Pro (WSAPI), and
CGI and Win-CGI inter-
faces, which will work with
any Web server.

WebApp also ships with
browser capabilities, an ad
rotator, SMTP components,
and data-aware HTML-
generation components and
functions.

HyperAct, Inc.
Price: Standard, US$199; Professional,
US$495.
Phone: (515) 987-2910
Web Site: http://www.hyperact.com
SupraSoft Ltd. released
Crystal Design Component,
an ActiveX control allowing
users of Crystal Reports to
embed a report into an
application.

Crystal Design Component
allows users to specify custom
report windows, add print-
preview capabilities to an
application, and provide inter-
national language localization
features to a database report.
The component doesn’t
restrict developers to pre-
built, report-preview inter-
faces; rather, they can create
user interfaces using the stan-
dard user-interface building
tools particular development
environments provide. The

component also provides
properties to control and
modify run-time report
parameters, and options
to ensure end users’ abili-
ty to modify report para-
meters as intended.

Crystal Design
Component is available
in 16- and 32-bit Delphi,
32-bit OCX, and 16-bit
VBX formats.

SupraSoft Ltd.
Price: US$149
Phone: 358 14 218 500
Web Site: http://www.-
suprasoft.com
CoStar Introduces
Developers Kit

CCooSSttaarr CCoorrpp.. introduced the
SSooffttwwaarree DDeevveellooppeerrss KKiitt (SDK),
for the Easy Software Suite, that
solves label-printing issues for
application developers, includ-

ing bar-code printing, label
design, label formatting, and

shrinking text to fit specific label
sizes. Developers can run pro-
grams invisibly to provide print-
ing support; open label files by
name; print labels and control

the number of copies to be
printed; change a label’s text,
address, or bar-code contents;
and specify image files to be

printed and paste pictures into
badge templates. The SDK

includes software, application
notes illustrating label-printing
functions, a CoStar LabelWriter
XL Plus, and a roll of address

labels; it supports Delphi, Visual
Basic, Access, and FoxPro. For

more information, call
(800) 426-7827 or visit
http://www.costar.com.

5 December 1997 Delphi Informant

News
L I N E

December 1997

Borland, MicroEdge Announce Visual SlickEdit - Delphi Edition

Scotts Valley, CA — Borland

and MicroEdge, Inc.
announced the MicroEdge
SlickEdit - Delphi Edition,
Borland Strategies Annou
Professional Developers

Borland Announces Borla
an automated program edit-
ing solution for the Delphi 3
development environment.

Visual SlickEdit - Delphi
nced at Microsoft
Conference

MCBA, Inc. Joins Borlan

nd DataGateway for Jav
Edition provides develop-
ment tools for building
enterprise-wide, client/server,
or Web-enabled applications.
Delphi developers have
access to Visual SlickEdit’s
editing features without hav-
ing to save or reload files
when switching between the
editor and Delphi; files are
saved only when the user
prompts Delphi to do so.
Other features include proce-
dure tagging, difference edit-
ing, selective display, and
syntax expansion.

Visual SlickEdit - Delphi
Edition is available for
US$149 and includes licenses
for Windows NT, Windows
95, and Windows 3.1. Delphi
1, 2, and 3 are supported. For
more information, call (800)
934-3348 or visit
http://www.slickedit.com.
d’s Partner/400 Program
San Diego, CA — At
September’s Microsoft
Professional Developers
Conference, Borland CTO
Rick LeFaivre demonstrated
Borland’s support for key
Microsoft distributed-
computing technologies,
such as the ActiveX Template
Library (ATL) and DCOM
(Distributed Component
Object Model).

LeFaivre also highlighted
the importance of the distrib-
uted computing model and
outlined Borland’s strategy
for helping developers create
multi-tier applications. These
applications allow the transfer
of business logic and configu-
ration instructions to a mid-
dle tier, thereby providing
easier, more cost-effective
maintenance and support of
applications.

In addition to ATL and
DCOM, LeFaivre demonstrat-
ed Borland’s support of
Microsoft’s Windows and
systems technology, such as
Microsoft Internet
Information Server and
Internet Explorer. Using
Borland’s C++Builder, Delphi
3, and MIDAS (Multi-Tier
Distributed Application
Services Suite), LeFaivre
demonstrated how to build a
distributed decision-support
application, leveraging data
stored in a Microsoft Access
database, making this informa-
tion available to users over the
Web. LeFaivre also demon-
strated how developers can
build Java applications that
connect to Microsoft SQL
Server or Microsoft Access
using Borland’s new JBuilder
pure Java development tool
and Borland’s DataGateway
for Java middleware.
San Antonio, TX —
Borland announced that
MCBA, Inc., an AS/400
solution provider and IBM
hardware distributor, has
joined the Borland Partner/-
400 program to deliver
client/server development
expertise to the AS/400
community.

This puts MCBA in good
position to provide clients
with the next generation of
hardware and software solu-
a

tions for the IBM mid-range
platform. Additionally,
MCBA’s experience in deliv-
ering AS/400 business solu-
tions worldwide will allow
Borland to continue to
reach more corporations
interested in building
advanced client/server soft-
ware applications.

For a complete list of
Borland/400 partners visit
http://www.borland.com/-
borland400/partner.html.
San Antonio, TX — Borland
announced Borland Data-
Gateway for Java, a database
connectivity middleware solu-
tion providing 100% Pure
Java client access to corporate
databases through industry-
standard JDBC interfaces.

Borland DataGateway
provides JDBC database
access, using native drivers
on a middle tier, to corporate
information residing on
Oracle, Sybase, Informix,
Microsoft SQL Server, DB2,
InterBase servers, and desktop
databases and ODBC data
sources. Features include a
Zero-Configuration/Zero-
Install Client, Pure Java/JDBC
Client, and native database
connectivity.

Borland DataGateway is
available in JBuilder
Client/Server Suite, and as a
stand-alone solution for any
JDBC-compliant Java applica-
tion, including those devel-
oped with JBuilder
Professional, Microsoft Visual
J++, IBM VisualAge for Java,
and Symantec Visual Café.
The Borland DataGateway

Enterprise server is available
for US$1,499. The Borland
DataGateway Professional
server supports dBASE,
Paradox, Microsoft Access,
and FoxPro, and is available
for US$299.95. For more
information, visit http://www.-
borland.com/datagateway/.

6 December 1997 Delphi Informant

On the Cover
Delphi 2, 3 / Threads

By Jon Jacobs
Threads Simplified
Untangling a Gnarly Topic

Athread is the basic executable code sequence to which CPU time is allocated
by the preemptive multitasking operating system (OS). Typically, each

thread gets 20 milliseconds before the OS switches to another thread. In gen-
eral, each thread has access to all the code, variables, and resources of the
application (called a process in this context). Every process has at least one
thread, but may have more. No thread “owns” any part of the application’s
code; several threads can execute the same code, as appropriate.
You may be wondering why you would want
to use threads. If you’re running applications
on a 32-bit Windows platform, you’re already
using threads. Each process (application) has
at least one thread vying for the CPU’s atten-
tion. From this point on, I’ll refer to the
main thread of a given application simply as
“the main thread.” If you’re using Delphi 2,
3, or another 32-bit compiler for a 32-bit
Windows platform, you’re already program-
ming threads. So a better version of the pre-
vious question would be: “Why explicitly use
any threads other than the main thread?”
This is harder to answer, because there are
many possible reasons. Here are a few:

You want to change the priority of the
thread.
You want several sequences to run simul-
taneously and do not want to manage
them yourself.
You want the thread to continue running
while you have a modal window open.

A War Story
I had a series of instructions controlling some
equipment. The loop was started by clicking a
Start button and stopped by clicking a Stop

button. At the bottom of the loop it used
Application.ProcessMessages, so other things
could be done, including pressing the Stop

button. Unfortunately, many of the things I
wanted to do required menu selections.
What’s wrong with that? Nothing important
was wrong, except that the control loop
stopped controlling. The same thing hap-
pened when I opened a modal form. None of
this was a big deal; it simply defeated the pur-
pose of the application!

As a temporary protection, I had the Start

button disable all menu items, leaving the
Stop button to re-enable them. This preserved
the main purpose of the application, which
was to control the equipment reliably, but it
made things rather inconvenient. It would
have been nice to be able to do other things
while remaining in control.

The long-term solution was to make the
control loop an independent thread. I
began reading various thread-related topics
in the Help system, which made the task
seem daunting. Finally, when I distilled the
subject to its essence, it turned out to be
simple. Of course, if you want to exploit a
lot of fancy features, you can make the use
of threads as complicated as you want.
Personally, I like simple, so what I present
in this article is very simple.

Keep It Simple
Other than creating the thread, if you take
advantage of the facilities that Delphi pro-
vides, there is only one thing you must do
to run an independent thread: You must
define a thread class as a descendant of the

program Thrd;

uses
Forms,

uMain in 'uMain.pas' {frmMain},
uModal in 'uModal.pas' {frmModal};

{$R *.RES}

begin
Application.Initialize;

Application.CreateForm(TfrmMain, frmMain);

Application.CreateForm(TfrmModal, frmModal);

Application.Run;

end.

Figure 1: The project file, Thrd.dpr, for our sample application.

On the CoverOn the Cover
TThread class, and override the Execute method. It’s in the
Execute method that you place the code you want to exe-
cute. Now that’s simple!

Well, few things in life are really that simple. There are a few
details to consider. The first is that the Create constructor has
a Boolean parameter. Pass it a value of False to start the
thread running as soon as you create it. If you pass True to
the constructor, the thread will be created in a suspended
state, and you’ll have to do something else to get it running.

The next detail to consider is whether you want to manage
disposal of the thread object yourself, or if you want that to
happen automatically when the thread execution terminates.
For the automatic approach, set the FreeOnTerminate property
to True. I prefer to do that in the constructor. Yes, I know:
Now you have two things to override; but once you’ve gone to
the small effort of deriving a class in the first place, overriding
the constructor is trivial.

The third detail to consider is that once you start a thread
running, you’ll usually want the ability to stop it. If it
stops on its own after a short time, that’s great. Normally,
you’ll need to include code to check the Terminated prop-
erty periodically (to make sure it actually does terminate).
That way you can tell the thread to terminate from the
outside. You can have any other thread (such as the main
thread) call its Terminate method.

An Illustration
In spite of these extra details, the subject of threads is still
rather simple. I will present a small application that illustrates
the simplicity of using threads, as well as some of the bene-
fits. The source code for the project is shown in Figure 1.
Listing One, beginning on page 10, shows the main unit,
named uMain, in its first version.

As usual, I started with a blank form. I named it frmMain, set
its Caption to Main (Thread Test), and set its Width to
just enough to show the Caption. Then I added two buttons
(BitBtn components) to the top of the form, side by side.
The first button’s purpose is to perform a simple count, so I
creatively named it btnCount with a Caption of Count. The
second button is named btnThread, with a Caption of Thread
Count. Below those buttons are btnStop and btnAuto, with
7 December 1997 Delphi Informant
Captions of Stop and &Auto, respectively. Below them are
two edit boxes, edCount and edThread, whose initial Text
properties are blank. The next two controls are checkboxes,
cbCount and cbThread, with Captions of Count and Thread.

The next item I placed on the form was for later use. It’s a
radio group, rgPriorities, with the Caption Thread

Priorities. I set its
Columns property to 2, its
ItemIndex property to 3, and
its Items property to Idle,
Lowest, Lower, Normal,
Higher, Highest, and
TimeCritical. Below it I
placed another button,
named btnModal, with a
Caption of &Modal Form.
Finally, I added a Timer
component, tmrCount, and
set its Interval to 10000 (for
ten seconds), and its Enabled
property to False. The result
is shown in Figure 2.

In the private section of the TfrmMain, I declared a Boolean
variable named Done; in the global var declaration are two
Longints: Count and ThreadCount.

Of course the buttons and Timer need event handlers. The
handler for the Count button’s OnClick event is not the
solution to one of humanity’s great problems. It does, how-
ever, provide a basis for comparing the effects of using an
independent thread. The essential code is:

repeat
Inc(Count);

until Done;

Done is set to True by the Stop button’s OnClick handler. As
shown here, the loop for btnCountClick has a serious prob-
lem: There is no opportunity for Done to be set. The applica-
tion will freeze as the loop continues forever, or until you
press CAD. I’ll shortly demonstrate a loop that’s even
tougher to stop, but for now let’s tame the one we have. The
loop needs to call Application.ProcessMessages so the rest of the
application can go about its business — especially the Stop

button. There’s a little more administrative work needed.
Initialize Done, Count, and edCount.Text before the loop.
And, because it would be nice to see the result, put a string
representation of Count into edCount.Text after the loop.

Even without the other event handlers, you can compile
and run the application. You can press the Count button,
wait a while, then press the Stop button. The ending value
of the counter will appear in edCount. For later compar-
isons, I found it convenient to count off 10 seconds. You
know: “One thousand-one, one thousand-two,” etc. On a
486 DX-40 my results were about 225,000, but to para-
phrase an automobile advertisement disclaimer, “Your

Figure 2: The sample application
at design time.

unit uModal;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, Buttons;

type
TfrmModal = class(TForm)
btnClose: TBitBtn;

private
{ Private declarations }

public
{ Public declarations }

end;

var
frmModal: TfrmModal;

implementation

{$R *.DFM}

end.

Figure 3: Source for the modal dialog box, uModal.pas.

Figure 4: The sample
application, with
modal dialog box, at
run time.

On the Cover
mileage may vary with road conditions, CPU speed, accu-
racy of your timing estimate, etc.”

Modal Oops
To see the effect of a modal form on the counting, let’s
add an OnClick event handler to btnModal. Put this in
btnModalClick:

ModalForm.ShowModal;

Of course, we should create a form, name it ModalForm,
and set its Caption to Modal Form. Its unit, called uModal,
is shown in Figure 3. Be sure to put uModal in uMain’s
implementation uses clause. Add a BitBtn component to
ModalForm, name it btnClose, and set its Kind property to
bkClose. It’s shown in Figure 4.

Compile and run the program. While you count off ten sec-
onds, press the Modal button on the main form. After a few
seconds, press the Close button on ModalForm well before
you press the Stop button. In another run, press the Modal
button as soon as you can after the Count button. Count
most of the 10 seconds with ModalForm open, then click its
Close button, then the main-form Stop button when the full
10 seconds have elapsed. The results are inescapable: While
ModalForm is open, the count halts!

Counting the time myself became a little tedious, and the dif-
ficulty of obtaining consistent results is obvious. For better
tests, I used the Timer component and the Auto button,
which starts the Timer and optionally starts the count. The
OnClick handler for Auto is:

procedure TfrmMain.btnAutoClick(Sender: TObject);

begin
tmrCount.Enabled := True;

if cbCount.Checked then
btnCountClick(nil);

end;
8 December 1997 Delphi Informant
The Timer’s OnTimer handler effectively “presses” the Stop

button for us with:

procedure TfrmMain.tmrCountTimer(Sender: TObject);

begin
TTimer(Sender).Enabled := False;

btnStopClick(nil);
frmModal.Close;

end;

Consider the importance of starting the Timer before start-
ing the count. If we started the count first, the Timer would
not be enabled until the count was stopped, which would
defeat the purpose of having the Timer. With two successive
statements in the same (in this case the main) thread, the
first must complete before the second starts. I just snuck in a
potential use for coding an independent thread. With pre-
emptive multitasking, you can launch a thread, then execute
subsequent statements long before the thread finishes.

At this point you can compile and run the program. Be sure
to check the Count checkbox, then click the Auto button.
After 10 seconds you’ll see the result. I gave hot keys to the
Auto button and the Modal button so I could click the Modal

button very quickly after the Auto button. If I held down the
A key, then pressed A then M as quickly as possible, I
could see counts under 3000. I let the Timer take care of
closing ModalForm for me. After you have done that at least
once, with and without opening ModalForm, you’re ready for
something a little more interesting.

A New Thread
The TCountThread class overrides the Create constructor and
the Execute method. Create calls the inherited Create, passing
False for its CreateSuspended parameter. Then it sets the
FreeOnTerminate property to True. The Execute method is
similar to the loop in btnCountClick:

procedure TCountThread.Execute;

begin
ThreadCount := 0;

repeat
Inc(ThreadCount);

until Terminated;

end;

On the Cover
The Terminated property will be set from outside the thread,
by calling the thread’s existing Terminate method. Because it’s
a separate thread, it is handled by Windows’ preemptive mul-
titasking. Therefore, it can omit Application.ProcessMessages,
which speeds the loop substantially. Of course, if the task
were more complicated, the savings from that one call would
be relatively less significant.

The repeat loop stops when Terminated is True, but other
(more useful) Execute methods may require different
approaches. The key fact is that your Execute code must
monitor the state of the Terminated property, and bail out
of the method when Terminated is True. If you assign a
handler for the OnTerminate event, it will be executed
when you call the thread’s Terminate method. The
TThread class handles synchronization with the main
thread for you.

The Thread Count button’s event handler, btnThreadClick, cre-
ates a thread of class TCountThread and automatically starts
its execution:

procedure TfrmMain.btnThreadClick(Sender: TObject);

begin
edThread.Text := '';

ct := TCountThread.Create;

end;

We’ll use the thread’s OnTerminate event handler,
ShowResult, to put text into the edThread edit box. Notice
that I assigned ShowResult inside the TMainForm method
instead of within the TCountThread constructor.
ShowResult itself is a TMainForm method that uses
TMainForm objects, so I found it convenient to do it this
way. Go ahead and add the ShowResult method:

procedure TfrmMain.ShowResult(Sender:TObject);

begin
edThread.Text := IntToStr(ThreadCount);

end;

and a call to it in the btnThreadClick procedure:

procedure TfrmMain.btnThreadClick(Sender: TObject);

begin
edThread.Text := '';

ct := TCountThread.Create;

ct.onTerminate := ShowResult;

end;

Of course, the ShowResult method must be declared as well;
Listing Two (on page 11) shows the uMain module’s code in
its final version.

The two Edit components will give us an obvious compari-
son of the two ways to accomplish the task. Although the
task used in this illustration is a trivial counting job, it repre-
sents important real-world tasks that could be used instead.

Now, before we do anything rash, let’s add some code to
btnStopClick, so it can stop our new thread as well as the old
count routine. It should now look like this:
9 December 1997 Delphi Informant
procedure TfrmMain.btnStopClick(Sender: TObject);

begin
if (ct <> nil) then

begin
ct.Terminate;

ct := nil;
end;

Done := True;

end;

The program also needs an initialization section for the unit
in which we put:

ct := nil;

We’re insuring that ct is valid when not nil, and nil when
not valid.

Action
Now that we have something for the Thread Count button to
do, let’s do it! Compile and run the program, click the Thread

Count button, count off 10 seconds and click the Stop button.
You’ll see quite a different result. On my machine, the count
that appears in edThread is about 38,000,000, which means
the loop went about 169 times faster. There certainly seems to
be a lot less overhead in checking the Terminated property
than there is in calling Application.ProcessMessages and check-
ing the Done variable. Score one more point in the indepen-
dent thread column.

Now let’s automate. Put the following new code in
btnAutoClick. Make sure you put it before the call to
btnCountClick, for the same reasons as previously mentioned.
The added code is:

if cbThread.Checked then
btnThreadClick(nil);

so the procedure should look like this:

procedure TfrmMain.btnAutoClick(Sender: TObject);

begin
tmrCount.Enabled := True;

if cbThread.Checked then
btnThreadClick(nil);

if cbCount.Checked then
btnCountClick(nil);

end;

This will enable you to start one count or the other, or both,
and then stop after 10 seconds. When you compile and run
now, check both checkboxes and click the Auto button.
Notice that both counts come out smaller now that the
CPU’s attention is divided between two active threads, but
the new thread still gets much further in its count. Of course
the main thread was active all along, but when we ran the
other thread before, the main thread was doing little more
than waiting for user input.

Now try the same thing, but open ModalForm right after-
wards and let the Timer close it. As expected, it stopped the
main count cold for the duration, but look what it did to the
new thread. The new thread got almost as far as if it were the
only count activated.

On the Cover
Set Your Priorities
A thread can have priorities. With a lower priority it gets
less of the CPU’s time, and with a higher priority it gets
more of the CPU’s time. Delphi gives us priority values
from an enumerated type, whose ordinal values are
sequential and zero-based. The radio group placed on the
form, but not yet used, has a zero-based ItemIndex proper-
ty corresponding to which radio button is on. With a little
typecasting, we can set the priority of the thread by setting
the appropriate radio button. The btnThreadClick proce-
dure should look like this:

procedure TfrmMain.btnThreadClick(Sender: TObject);

begin
edThread.Text := '';

ct := TCountThread.Create;

ct.OnTerminate := ShowResult;

ct.Priority := TThreadPriority(rgPriorities.ItemIndex);

end;

Now you can experiment with different priorities for the
new thread. The priority we were using before by default
was tpNormal. Notice that if you have ModalForm open
most of the time, the priority setting has little effect; it’s
most meaningful when the thread has to compete for
attention.

Unless you like re-booting, do not use tpTimeCritical in this
application. Use it only with threads that are quickly self-
terminating, and that truly are “time critical.” On the other
hand, if you’re prepared to shut off the computer’s power,
go ahead and have fun. But you’ve been warned.

Last Thread
I trust this little illustration has encouraged you that imple-
menting independent threads can be quite easy, and I hope
it’s given you some ideas for using independent threads.

Incidentally, I did all this in Delphi’s IDE. It occurred to me
that Delphi itself was an application with at least one thread,
so I shut down Delphi and launched THRD.EXE as the only
obvious application running. I saw numbers that were notice-
ably higher, but not startlingly so. Evidently, because Delphi
had been doing nothing but awaiting user input, it took very
little of the CPU’s time. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\DEC\DI9712JJ.

Jon Jacobs works for USLife converting Turbo Pascal software to Delphi. He lives in
Dallas with his wife and son.
10 December 1997 Delphi Informant
Begin Listing One — uMain.pas (Version 1)
unit uMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ExtCtrls, Buttons;

type
TfrmMain = class(TForm)
btnCount: TBitBtn;

btnThread: TBitBtn;

btnStop: TBitBtn;

btnAuto: TBitBtn;

btnModal: TBitBtn;

edCount: TEdit;

edThread: TEdit;

cbCount: TCheckBox;

cbThread: TCheckBox;

tmrCount: TTimer;

rgPriorities: TRadioGroup;

procedure btnCountClick(Sender: TObject);

procedure btnStopClick(Sender: TObject);

procedure btnAutoClick(Sender: TObject);

procedure btnModalClick(Sender: TObject);

procedure tmrCountTimer(Sender: TObject);

private
Done : Boolean;

public
{ Public declarations }

end;

var
frmMain: TfrmMain;

Count,

ThreadCount : Longint;

implementation

uses uModal;

{$R *.DFM}

procedure TfrmMain.btnCountClick(Sender: TObject);

begin
Done := False;

Count := 0;

edCount.Text := '';

repeat
Inc(Count);

Application.ProcessMessages;

until Done;

edCount.Text := IntToStr(Count);

end;

procedure TfrmMain.btnStopClick(Sender: TObject);

begin
Done := True;

frmModal.Close;

end;

procedure TfrmMain.btnAutoClick(Sender: TObject);

begin
tmrCount.Enabled := True;

if cbCount.Checked then
btnCountClick(nil);

end;

procedure TfrmMain.tmrCountTimer(Sender: TObject);

begin
tmrCount.Enabled := False;

btnStopClick(nil);

On the Cover
frmModal.Close;

end;

procedure TfrmMain.btnModalClick(Sender: TObject);

begin
frmModal.ShowModal;

end;

end.

End Listing One
Begin Listing Two — uMain.pas (Version 2)
unit uMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ExtCtrls, Buttons;

type
TfrmMain = class(TForm)

btnCount: TBitBtn;

btnThread: TBitBtn;

btnStop: TBitBtn;

btnAuto: TBitBtn;

btnModal: TBitBtn;

cbCount: TCheckBox;

cbThread: TCheckBox;

edCount: TEdit;

edThread: TEdit;

rgPriorities: TRadioGroup;

tmrCount: TTimer;

procedure btnCountClick(Sender: TObject);

procedure btnStopClick(Sender: TObject);

procedure btnAutoClick(Sender: TObject);

procedure tmrCountTimer(Sender: TObject);

procedure btnModalClick(Sender: TObject);

procedure btnThreadClick(Sender: TObject);

private
Done : Boolean;

procedure ShowResult(Sender:TObject);

public
{ Public declarations }

end;

TCountThread = class(TThread)
protected
procedure Execute; override;

public
constructor Create;

end;

var
frmMain : TfrmMain;

Count,

ThreadCount : Longint;

ct : TCountThread;

implementation

uses uModal;

{$R *.DFM}

procedure TfrmMain.btnCountClick(Sender: TObject);

begin
Done := False;

Count := 0;

edCount.Text := '';

repeat
Inc(Count);
11 December 1997 Delphi Informant
Application.ProcessMessages;

until Done;

edCount.Text := IntToStr(Count);

end;

procedure TfrmMain.btnStopClick(Sender: TObject);

begin
if (ct <> nil) then

begin
ct.Terminate;

ct := nil;
end;

Done := True;

end;

procedure TfrmMain.btnAutoClick(Sender: TObject);

begin
tmrCount.Enabled := True;

if cbThread.Checked then
btnThreadClick(nil);

if cbCount.Checked then
btnCountClick(nil);

end;

procedure TfrmMain.tmrCountTimer(Sender: TObject);

begin
TTimer(Sender).Enabled := False;

btnStopClick(nil);

frmModal.Close;

end;

procedure TfrmMain.btnModalClick(Sender: TObject);

begin
frmModal.ShowModal;

end;

procedure TfrmMain.btnThreadClick(Sender: TObject);

begin
edThread.Text := '';

ct := TCountThread.Create;

ct.OnTerminate := ShowResult;

ct.Priority := TThreadPriority(rgPriorities.ItemIndex);

end;

procedure TfrmMain.ShowResult(Sender:TObject);

begin
{ Used for thread's OnTerminate }
edThread.Text := IntToStr(ThreadCount);

end;

constructor TCountThread.Create;

begin
inherited Create(False);

FreeOnTerminate := True;

end;

procedure TCountThread.Execute;

begin
ThreadCount := 0;

repeat
Inc(ThreadCount);

until Terminated;

end;

initialization

ct := nil;

end.

End Listing Two

12 December 1997 Delphi Informant

On the Net
Delphi 1 / TCP/IP / FTP / Windows Sockets

By Howard Schutzman

Figure 1: Basic socket architectu
FTP Programming
Creating File Transfer Protocol Programs
with Windows Sockets

The purpose of this article is to get “under the hood” of Internet TCP/IP socket
programming. You will learn to write code that can communicate with a

program running on another computer. The other program doesn’t need to be
running on Windows; it can be running on a UNIX workstation, a Macintosh,
or a mainframe. As long as the remote computer is connected to your comput-
er with a TCP/IP network (such as the Internet), the two programs can send
and receive messages.
Real-World Applications
It sounds interesting, but you may be won-
dering what kinds of problems you can solve
with this technology. To spark your imagina-
tion, I will describe two socket-programming
projects I helped implement.

The first project involved verifying and trans-
ferring Electronic Data Interchange (EDI)
files, such as invoices, between different com-
panies with different kinds of computers. For
example, Joe at Company A might want to
retrieve a file from Company B’s computer,
verify its contents, and send it to Fran at
Company C. When done manually, this is a
tedious process. First, Joe needs to connect to
Company B’s computer using some type of
FTP (File Transfer Protocol) program.
Assuming he understands how to use FTP
re.
commands (using FTP isn’t easy, especially
for less technical users), he downloads the file
to his computer. Second, he runs the verifica-
tion program. Third, if successful, he starts
his e-mail program, attaches the file, and
sends it to Fran.

Using socket programming, I implemented a
program that reduces this to a button click.
The program automatically logs on to
Company B’s computer, downloads the
appropriate file, verifies it, and composes and
sends an e-mail to Fran. The code presented
in this article is derived from the FTP portion
of the EDI project (see end of article for
download details).

The second project involved implementing a
high-performance link between a server and
many remote clients. At peak times, the
server must handle more than 100,000
requests per hour, and still respond within a
few seconds. To solve this problem, we
designed a compact proprietary messaging
scheme and used socket programming to
handle the communications. As a side pro-
ject, we implemented an automatic updating
system, whereby the server notifies the client

On the Net
if it’s in need of updating, and schedules a file transfer to
provide the update.

Overview of Sockets
A socket is the object that handles the sending and receiv-
ing of messages over a TCP/IP network, including the
Internet. TCP/IP is a set of protocols that ensures the reli-
able delivery of messages. TCP stands for Transmission
Control Protocol; IP stands for Internet Protocol. Using
sockets, you’re only concerned with message contents.
TCP/IP administers delivery; it breaks the message into
packets, routes each packet to the correct destination,
requests retransmission if a packet has been corrupted, and
reassembles the message.

Figure 1 provides an overview of how sockets work. One
socket is the Server; it listens on the network to see if anyone
wants to communicate with it. The other socket is the Client;
it attempts to connect to a socket that is listening. The Server
socket notifies the Client socket if it accepts the connection.
Once a connection is established, either the Client or Server
can send messages. Additionally, either socket can terminate
the connection.

If you are writing the programs on both sides of the connec-
tion, you may want to implement your own communications
protocol. You can also implement one of the standard
Internet protocols. This article will use standard FTP to illus-
trate how to write a socket program.

A socket has two properties that are used to identify it: the IP
Address and the Port. You are probably familiar with the IP
Address. This is the “dot” address used on the Internet. It
consists of four eight-bit numbers separated by periods, such
as 199.234.51.54. Each computer on a TCP/IP network
must have a unique IP Address.

You may be wondering how to determine a machine’s IP
Address. Typically, when you are browsing on the Internet,
you use a name, such as “www.borland.com”, to connect to a
machine. This name must be translated to a 32-bit IP
Address before using a socket. Name-to-IP Address transla-
tion is taken care of by the Domain Name Server (DNS) run-
ning at your Internet Service Provider (ISP). If you are run-
ning on a local intranet, there is usually a local process that
takes care of name resolution. In any case, as you will see, you
need not worry about this problem because name resolution
is part of the socket-programming interface.

The Port is similar in concept to a serial or parallel port. A
computer may have several server sockets running simultane-
ously, each listening on a different Port. For example, if a
computer has both a Web Server and an FTP server running,
the Web Server is listening on Port 80 and the FTP server is
listening on Port 21. Figure 2 lists several common Internet
protocols and the ports they use. Port names can also be
symbolic. For example, when you type http: in your brows-
er, you are referring to Port 80; when you type ftp:, you are
referring to Port 21.
13 December 1997 Delphi Informant
The Socket Programming Interface
The standard network API for Windows TCP/IP program-
ming is known as WinSock. The WinSock implementation
on a machine is often referred to as the “TCP/IP stack.” Most
machines running Windows 95 and Windows NT 4 use the
WinSock implementation provided by Microsoft as part of
the operating system. The situation under Windows 3.1 (and
3.11) is more chaotic. Because Microsoft did not include a
WinSock implementation with the operating system, a
Windows 3.1 machine may contain any of a number of
WinSock implementations, each slightly different from the
others. Fortunately, you should still be able to support most
flavors of Windows 3.1 TCP/IP stacks.

The WinSock API is complex. Therefore, a number of ven-
dors have written components that provide an object-oriented
wrapper around the API. I’ve tried several — some with lim-
ited success. I found the dWinsock VCL components to be
very reliable on both Windows 3.1 and Windows 95.
Additionally, the dWinsock authors provide excellent support
for their product. A shareware version has been included with
the code accompanying this article. The dWinsock Web site
is located at http://www.aait.com/dwinsock.

Windows Sockets Network Programming by Bob Quinn and
Dave Shute [Addison-Wesley, 1995] is considered one of the
best books on WinSock programming. If you are using one of
the wrapper components, however, you probably don’t need
to read it. But if you are one of those people who likes to
know all the gory technical details, it’s the book for you.

The rest of this article is concerned with implementing
HsSocket, an object that allows you to add FTP client capa-
bilities to an application. You can connect to an FTP server,
change directories, obtain a directory listing, download a file
from the server, upload a file to the server, delete a file, send
site-specific commands, and disconnect. Because I needed to
support Windows 3.1, the code was implemented using 16-
bit Delphi, but it can easily be ported to 32-bit Delphi.

The code in this article was implemented using the
dWinsock control mentioned previously. Therefore, if you
intend to run this code within Delphi, you must install
dWinsock as a VCL component by following the instruc-
tions in the installation file.

To test the code, you need to connect to an FTP server.
You can certainly connect to any number of servers on the
Internet. However, you will probably find it useful to have
a small FTP server running on
your machine. (WFTPD, an
inexpensive FTP server, is
available from Texas Imperial
Software; contact
alun@texis.com for further
information.)

Before proceeding, we’ll look at
some code that shows how to

Protocol Port

HTTP (Web) 80
FTP 21
Gopher 70
SMTP (e-mail) 25
POP3 (e-mail) 110
Telnet 23

Figure 2: Some common
Internet protocol ports.

{ Connect command socket to FTP server. }
function THsSocket.FtpConnect(Address : string;

Port : Integer) : Boolean;

begin
Result := False

CmdSkt.Address := Address;

CmdSkt.Port := IntToStr(Port);

try
CloseSkt(CmdSkt);

CmdSkt.Open(TStreamSocket);

except
on E : Exception do

DisplayError('Open error: ' + E.Message);
end;

Result := True;

end;

Figure 3: A simplified version of the FtpConnect function.

On the Net

{ Command connection OnDisconnect handler. }
procedure THsSocket.CmdSktDisconnect(Sender: TObject;

Socket: TSocketBase);

begin
if (FActionCompleted) then
Exit;

case WaitState of
wsQuit : FActionCompleted := True;

end;
end;

Figure 4: The OnSocketDisconnect event handler.

{ ActionCompleted is the key routine for serializing
asynchronous behavior. It's called after each command is
sent to the FTP server. It waits until the server
returns a successful status code, or until it times out.
It returns True on success, False on failure. }

function THsSocket.ActionCompleted : Boolean;

var
EndTime : TDateTime;

begin
{ Wait until TimeOut seconds have elapsed. }
EndTime := Now + CmdSkt.TimeOut / SECONDS_PER_DAY;

while (Now < EndTime) do begin
{ Exit successfully if event handler detected

success status. }
if (FActionCompleted) then
begin

WaitState := wsNone;

Result := True;

Exit;

end;

{ Reset wait time if requested by event handler. }
if (ResetTime) then
begin
EndTime := Now + CmdSkt.TimeOut / SECONDS_PER_DAY;

ResetTime := False;

end;

{ Let other processes work. }
Application.ProcessMessages;

end; { while }

{ Failure if we time out. }
Result := False;

end;

Figure 5: The ActionCompleted function.
establish a connection with a client socket. The code in Figure 3
shows a simplified version of the FtpConnect function. The two
arguments are the Address of the FTP server and the Port. Address
can be either an IP address (e.g. 199.234.51.54), or a domain
name (e.g. world.std.com); the dWinsock component takes care
of name-to-address resolution. Port is normally 21, which is the
standard FTP server port. To connect to the server, set the client
socket’s Address and Port properties, and call the Open method.

The Open method takes one argument: the socket type. In
our case, this is TStreamSocket, which represents reliable TCP
transport. dWinsock also supports the TDatagramSocket type,
which implements the faster — but less reliable — UDP
(User Datagram Protocol).

When the server accepts the connection, the OnConnect event
is fired. A flag is set in the event handler, indicating the con-
nection was successful. This illustrates the asynchronous
nature of socket programming. The next section presents a
technique for simplifying handling of asynchronous events.

Serializing Sockets
Socket programming is asynchronous; after sending a
request, an event must fire before an application knows
whether the request succeeded. If the network goes down,
the event will never fire. The advantage of an asynchro-
nous approach is a more efficient use of computer
resources. It can take a long time to receive a response over
the network. Rather than sitting idle and waiting, the
computer can perform other useful work until the
response is received.
14 December 1997 Delphi Informant
The disadvantage is that more complex logic is needed to
handle asynchronous events. The program cannot proceed
sequentially. It must remember its state so that when an event
fires, it knows what to do.

To simplify matters, HsSocket implements a technique that
allows requests to be made in a serial fashion. A simple state
machine is used. Before making a request, the code sets a
state variable indicating which request is pending. Then the
request is made. A call is made to the ActionCompleted func-
tion. ActionCompleted will not return control until the appro-
priate event has fired, or the request times out. Therefore,
each request is synchronous, waiting for ActionCompleted to
return before proceeding.

ActionCompleted works with the event handlers. When an
event is fired, the handler looks at the state variable to see
which request is pending. If the event is a response to the
pending request, the event handler sets the FActionCompleted
variable to True, to indicate the request is no longer pending.
The code in Figure 4 is the OnDisconnect event handler. If
the state is wsQuit, indicating a Quit request has been sent
to disconnect from the server, the FActionCompleted variable
is set to True.

The code in Figure 5 shows the ActionCompleted function.
The code loops until either the FActionCompleted flag has
been set by one of the event handlers, or looping has contin-
ued for longer than the time-out value, EndTime. The

{ Connect command socket to FTP server. }
function THsSocket.FtpConnect(Address : string;

Port : Integer) : Boolean;

begin
Result := False;

SetWaitState(wsConnect);

CmdSkt.Address := Address;

CmdSkt.Port := IntToStr(Port);

try
CloseSkt(CmdSkt);

CmdSkt.Open(TStreamSocket);

except
on E : Exception do
DisplayError('Open error: ' + E.Message);

end;

if (not ActionCompleted) then begin
DisplayError('Unable to connect to server ' + Address);

Exit;

end;

Result := True;

end;

Figure 6: The full version of FtpConnect.

On the Net

Figure 7: The FTP architecture.

Function Command Syntax Success Stat
set user USER <user name> 230, 331
set password PASS <password> 230
change directory CWD <path> 250
set data type TYPE <type code> 200
port-mode data PORT <address, port> 200
passive-mode data PASV 227
list directory LIST <path name> (data port clo
retrieve file RETR <file name> (data port clo
store file STOR <file name> 226, 250
delete file DELE <file name> 250
site specific SITE <string> 200
disconnect QUIT (cmd port clo

Figure 8: An FTP command summary.
ResetTime flag is used for requests that fire more than one
event. If an intermediate event is fired, the ResetTime flag
indicates the time-out value should be reset so a time out
doesn’t occur before the final event is fired. The primary use
of this flag is for retrieving a file. The file is received in
blocks, with each block firing an intermediate event that sets
the ResetTime flag. When the event is fired that indicates the
entire file has been retrieved, the FActionCompleted flag is set.
If there was no ResetTime flag, a time-out could easily occur
before the entire file is received.
15 December 1997 Delphi Informant
Figure 6 is a full listing of the FtpConnect function. The state
variable is set to wsConnect to indicate a connection is pend-
ing. The Open method is called. ActionCompleted is called
and will not return until the connection is accepted, or the
wait exceeds the time-out value.

FTP Overview
Figure 7 illustrates the architecture of the FTP. The main
connection from the FTP client to the FTP server occurs
on Port 21. This is known as the command connection. All
messages over this connection are ASCII text ending in a
carriage return/line feed. The client sends commands to the
server. Commands are defined as three- or four-character
mnemonics, and some commands include parameters. The
server responds to the commands with status messages,
which consist of a three-digit code followed by a text mes-
sage. The value of the three-digit code indicates whether
the request was successful.

Certain commands, such as those for retrieving
or sending files, require another connection to be
opened; this is known as the data connection. The
file data is sent over the data connection, and the
connection is closed once the data has been sent.
There are two modes for establishing data con-
nections. In port mode, the FTP client listens on
a server socket and sends the port number to the
FTP server. The server socket must listen on Port
20, or on the next available port after 1024.
(Ports 1-1024 are reserved for standard proto-
cols.) In passive mode, the FTP server listens and
sends the port number in response to a passive
request. The choice of data-connection modes is
up to you. Most commercial FTP clients default

to port mode. If you are concerned about security, or
must pass through a firewall, passive mode is a better
choice because you connect to the server rather than
having the server connect to you.

HsSocket uses three socket components to implement
the FTP: CmdSkt is a client socket used for the com-
mand connection; ListenSkt is a server socket used for
the port-mode data connection; and DataSkt is a client
socket used for the passive-mode data connection.

The table in Figure 8 summarizes the FTP com-
mands implemented in this article, as well as the
return codes indicating success. These commands
represent a subset of the entire FTP command set.

As with all Internet protocols, FTP is described in a Request
for Comment (RFC) document, RFC #929, available at
http://www.internic.net. Many books on Internet program-
ming also contain a good description of the FTP.

Command Processing
The code in Listing Three (beginning on page 18) shows the
routines used to send commands to the FTP server. The client
socket named CmdSkt is used for the command connection.

us

sed)
sed)

sed)

{ FTP methods. }
function FtpChangeDir(Directory : string) : Boolean;
function FtpConnect(Address : string;

Port : Integer) : Boolean;

function FtpDelete(RemoteFile : string) : Boolean;
function FtpDisconnect : Boolean;

function FtpListDir(Filter : string;
ListFile : string) : Boolean;

function FtpPassive : Boolean;

function FtpPassword(Password : string) : Boolean;
function FtpPort : Boolean;

function FtpRetrieveFile(LocalFile : string;
RemoteFile : string) : Boolean;

function FtpSetType(FtpType : TFtpType) : Boolean;

function FtpSite(Command : string) : Boolean;
function FtpStoreFile(LocalFile : string;

RemoteFile : string) : Boolean;
function FtpUser(User : string) : Boolean;

{ Other methods. }
procedure SetTimeOut(Seconds : Integer);

{ Debugging methods. }
procedure OpenLog(LogFileName : string);
procedure CloseLog;

procedure DisplayDebugForm(ShowFlag : Boolean);

Figure 9: HsSocket public methods.
The procedure SendCommand is called each time a com-
mand is sent. It merely adds a carriage return/line feed and
calls SendSktData. The SendSktData procedure handles the
sending of all data (commands and files). It attempts to
send data using the Send method, which returns the num-
ber of bytes sent. If all the data is not sent, the OnWrite
event will fire when the socket is ready to send more data.
The OnWrite event handler sets the OnWriteFlag to True.
Therefore, SendSktData will loop until either the OnWrite
event fires (as indicated by OnWriteFlag), or the time-out
value is exceeded.

When the FTP server sends a reply, it will trigger an
OnRead event. The CmdSktRead procedure is the event
handler. It’s possible the FTP server will send several
reply lines. Therefore, CmdSktRead builds a string list with
one entry for each reply line. CmdSktRead can determine
where each reply line ends by searching for the terminating
carriage-return/line-feed characters. CmdSktRead also han-
dles the case where a partial line is sent (although this
rarely happens), by saving the data until the next OnRead
event is fired with the rest of the line.

For each reply line, CmdSktRead strips off the status code.
Based on the wait state, which indicates the pending com-
mand, the FActionCompleted is set when the status code
indicates success. This allows the ActionCompleted func-
tion, as discussed above, to return a success indicator, and
the application can proceed to the next command.

Note that this approach has minimal error reporting. If the
FTP server returns an error status code, it is simply
ignored. Eventually, ActionCompleted will time out and
return a failure indicator. The program will fail gracefully,
but no indication is given as to why the failure occurred.
This is acceptable for my automated applications because,
once a connection is established, things almost always pro-
ceed smoothly. Depending on your application, however,
you may want to expand the CmdSktRead routine to
improve error reporting by processing failure statuses as
well as success statuses.

Data Connections
As indicated earlier, certain commands require that a data
connection be established. These commands include
retrieve file (from the server), store file (on the server), and
list directory (the directory listing is treated as a file). The
code in Listing Four (beginning on page 20) is used to
establish a data connection.

The FtpSetType function is used to establish the type of data
to be transferred. The code in Listing Four supports ASCII
and binary data. The FTP also supports EBCDIC data.

The FtpPort function is used to establish a port-mode data
connection. The ListenSkt port property is set to 0; this
allows WinSock to choose any port above 1024 for listen-
ing. The Listen method is called to place ListenSkt in listen
mode. The FTP PORT command string is constructed.

On the Net
16 December 1997 Delphi Informant
The syntax is the word “PORT”, followed by six comma-
separated values. The first four values are the four parts of
the IP Address of the computer running the FTP client.
The last two values are the upper and lower bytes of the
port number. The command string is then sent to the FTP
server so it knows where to connect.

Alternatively, the FtpPassive function is used to establish a
passive-mode data connection. The PASV command is sent
to ask the FTP server to set up a server socket. The reply
from the server contains connection information about the
server socket. As with the PORT command, it consists of six
comma-separated values. The first four values are the server
IP address. The last two values are the upper and lower bytes
of the port number. FtpPassive decodes these values and
stores them in the DataSkt Address and Port properties. The
Open method is then called to establish a data connection
with the server.

The DoDataSktRead event-handler procedure is used to read
data from the FTP server over the data connection. It calls
the socket’s Recv method to fill a buffer with the data. It uses
the BlockWrite routine to transfer this data to a file. It sets the
ResetTime flag to inform the ActionCompleted routine to reset
its time-out value.

The SendSktData procedure is used to send data to the FTP
server over the data connection. This code was discussed in
the previous section.

Testing HsSocket
Figure 9 lists the public methods in HsSocket. There is one
method for each command you can send to the FTP server.
There is a utility routine to set the time-out value. There are
also three debugging routines to allow you to log information
to a log file or to the screen.

Figure 10: The Ftptest.exe main form.

On the Net

procedure TMainFrm.LoginBtnClick(Sender: TObject);

var
Success : Boolean;

begin
{ IP address, user name, and password must be filled. }
if ((IpAddrEdit.Text = '') or

(UserEdit.Text = '') or
(PassEdit.Text = '')) then

begin
MessageDlg(

'Please enter ip address, user name, and password',

mtWarning, [mbOk], 0);

end;

{ Open debug log. }
HsSocket.OpenLog('log.txt');

{ Connect, send user command, send password command. }
with HsSocket do begin
Success := FtpConnect(IpAddrEdit.Text, 21);

if (Success) then
Success := FtpUser(UserEdit.Text);

if (Success) then
Success := FtpPassword(PassEdit.Text);

end;

{ Indicate if successful. }
if (Success) then

MessageDlg('Login successful', mtInformation, [mbOk], 0);

else
MessageDlg('Unable to log in', mtWarning, [mbOk], 0);

end;

Figure 11: The OnClick event handler for the Login button.

procedure TMainFrm.ListBtnClick(Sender: TObject);

var
Success : Boolean;

ListFile : TextFile;

FileStr : string;
begin
{ Set ASCII data mode, set up port data connection,

get directory listing. }
with HsSocket do begin
Success := FtpSetType(ftAscii);

if (Success) then
Success := FtpPort;

if (Success) then
Success := FtpListDir('', 'listdir.txt');

end;

if (not Success) then
begin

MessageDlg('Unable to obtain directory listing',

mtWarning, [mbOk], 0);

Exit;

end;

{ Fill list box with directory listing passed back
in Listdir.txt. }

DirList.Clear;

AssignFile(ListFile, 'listdir.txt');

Reset(ListFile);

while (not Eof(ListFile)) do begin
Readln(ListFile, FileStr);

DirList.Items.Add(StripFileName(FileStr));

end;

CloseFile(ListFile);

end;

Figure 12: The OnClick event handler for the List Dir button.

procedure TMainFrm.RetrieveBtnClick(Sender: TObject);

var
Success : Boolean;

begin
{ Make sure file name has been entered. }
if (FileEdit.Text = '') then
begin
MessageDlg('Please enter a file name',

mtWarning, [mbOk], 0);

Exit;

end;

{ Set binary data mode; set up passive data connection;
retrieve file. }

with HsSocket do begin
Success := FtpSetType(ftBinary);

if (Success) then
Success := FtpPassive;

if (Success) then
Success := FtpRetrieveFile(FileEdit.Text,

FileEdit.Text);

end;

{ Indicate success or failure. }
if (Success) then

MessageDlg(FileEdit.Text + ' retrieved successfully',

mtInformation, [mbOk], 0);

else
MessageDlg('Unable to retrieve ' + FileEdit.Text,

mtWarning, [mbOk], 0);

end;

Figure 13: The OnClick event handler for the Retrieve button.
I chose to implement HsSocket as an invisible form. This
gave me a container for the socket components, and provided
me with a debugging form that can be made visible upon
request. Alternatively, I could have implemented HsSocket as
a plain Delphi object, or as a non-visual VCL component.

The form in Figure 10 is the main form for Ftptest.exe, a
test application for HsSocket. Each of the buttons exercise
different commands that can be sent to the FTP server. The
complete source for this executable is available; see end of
article for details.

The Login button code connects to the server, and sends the
user name and the password. Its OnClick event handler is
shown in Figure 11.
17 December 1997 Delphi Informant
The List Dir button code (see Figure 12) sets the data-connection
type to ASCII, sets up a port mode data connection, and sends
the list-directory command. It reads the file returned by the
server, stripping out the file names and loading the list box.

On the Net
The Retrieve button (see Figure 13) sets the data connec-
tion to ASCII, sets up a passive-mode data connection,
and sends the “retrieve” file command. Remember, the
mode choice for data connections is up to you. I simply
wanted to test both modes. The Send button is similar to
the Retrieve button, except it sends the “store” file com-
mand instead of the “retrieve” file command.

The Logout button code simply sends the “quit” command:
18 December 1997 Delphi Informant

Log started at 4/27/97 1:54:19 PM

RECV: 220 WFTPD 2.30 service (by Texas Imperial Software) ready

SEND: USER hbs

RECV: 331 Give me your password, please

SEND: PASS

RECV: 230 Logged in successfully

SEND: TYPE A

RECV: 200 Type is ASCII

SEND: PORT 199,234,51,54,4,88

RECV: 200 PORT command okay

SEND: LIST

RECV: 150 File Listing Follows in ASCII mode

RECV: 226 Transfer finished successfully.

SEND: TYPE I

RECV: 200 Type is Image (Binary)

SEND: PASV

RECV: 227 Entering Passive Mode (199,234,51,54,4,89)

SEND: RETR retr.zip

RECV: 150 "D:/TEMP/retr.zip" file ready to send (144714 bytes)

RECV: 226 Transfer finished successfully.

SEND: TYPE I

RECV: 200 Type is Image (Binary)

SEND: PORT 199,234,51,54,4,91

RECV: 200 PORT command okay

SEND: STOR send.zip

RECV: 150 "D:/TEMP/send.zip" file ready to receive in IMAGE / B

RECV: 226 Transfer finished successfully.

File store successfully completed

SEND: QUIT

Log file closed at 4/27/97 1:54:43 PM

Figure 14: The log file listing.

Figure 15: The server log listing.
procedure TMainFrm.LogoutBtnClick(Sender: TObject);

begin
HsSocket.FtpDisconnect;

HsSocket.CloseLog;

end;

Figure 14 is a listing of the log file generated by pushing each
button. Figure 15 shows the FTP server log, demonstrating
how the protocol is perceived from the server’s perspective. I
recommend you take a look at these figures, because they will

quickly give you a good understanding
of how the FTP works.

Conclusion
This article gives you a solid introduction
on how to program using TCP/IP sock-
ets. FTP was chosen as an example
because it exposes most of the issues relat-
ed to socket programming. You might
want to choose a simpler protocol for
your first socket program, such as the
SMTP for sending mail. Alternatively,
you can design your own protocol and
implement both the client and the server.
You need not be on a network to test
your implementation; sockets can be used
to communicate between two programs
running on the same machine. Sockets
are a powerful technology; combined
with Delphi, you can solve some very
interesting and important problems. ∆

The files referenced in this article are
available on the Delphi Informant Works
CD located in INFORM\97\DEC\-
DI9712HS.

 for new user

in IMAGE / Binary mode

inary mode

Howard Schutzman is the principal consultant at Computing Concepts, Inc. in
Westford, MA. He develops custom software solutions, including Internet and
multimedia applications. He prefers programming with Delphi, but can be coerced
into using C++ or Visual Basic if necessary. Howard can be reached at
hbs@world.std.com.
Begin Listing Three — Command Processing Routines
{ Append cr/lf prior to sending a command. }
procedure THsSocket.SendCommand(Msg : string);
const
CrLf = #13#10;

var
SendMsg : array [0..258] of Char;

begin
StrPCopy(SendMsg, Msg + CrLf);

AddDiagnostic('SEND: ' + Msg);

SendSktData(CmdSkt.Conn, SendMsg, StrLen(SendMsg));

end;

On the Net
{ Send data to FTP server. }
function THsSocket.SendSktData(Socket : TSocketBase;

Buffer : PChar; Count : Integer) : Boolean;

var
Remaining : Integer;

Ptr : PChar;

EndTime : TDateTime;

begin
Result := False;

if (Count <= 0) then
Exit;

Remaining := Count;

Ptr := Buffer;

{ Keep trying to send until all data sent or timeout. }
while (True) do begin
OnWriteFlag := False; { Reset by OnWrite. }

{ If all bytes have been sent, we're done. }
Count := Remaining;

Remaining := Count - Socket.Send(Ptr^, Count);

if (Remaining <= 0) then
Break;

{ Otherwise, wait until OnWrite event is fired,
or we time out. }

EndTime := Now + CmdSkt.TimeOut / SECONDS_PER_DAY;

while (not OnWriteFlag and (Now < EndTime)) do begin
Application.ProcessMessages;

end;
if (not OnWriteFlag) then

begin
DisplayError('Unable to complete send');

Exit;

end;

{ Reset data ptr past bytes that have been sent. }
Ptr := Ptr + (Count - Remaining);

end;
Result := True;

end;

{ OnWrite handler for all 3 sockets... }
procedure THsSocket.SktWrite(Sender: TObject;

Socket: TSocketBase);

begin
OnWriteFlag := True; { ...so SendSktData can continue. }

end;

{ Command connection OnRead event handler. }
procedure THsSocket.CmdSktRead(Sender: TObject;

Socket: TSocketBase);

const
{ Success statuses for all ftp commands. }
CONNECT_OK = '220';

USER_OK = '230';

USER_OK_PASS = '331';

PASS_OK = '230';

PASV_OK = '227';

TYPE_OK = '200';

CWD_OK = '250';

PORT_OK = '200';

STOR_OK = '125';

STOR_OK_OPEN = '150';

SITE_OK = '200';

STOR_DONE_OK = '250';

STOR_DONE_OK_CLOSE = '226';

DELE_OK = '250';

CrLf = #13#10;

var
Buffer : array [0..2047] of Char;

BuffNdx : Integer;

RecvCnt : Integer;

Remaining : Integer;

BuffPtr, CrLfPtr : PChar;
19 December 1997 Delphi Informant
i : Integer;

Status : string [3];

begin
{ Build a string list; one entry per server reply line. }

{ If a previous read contained a partial reply,
add it to the receive buffer. }

StrPCopy(Buffer, PartialRecvBuffer);

PartialRecvBuffer := '';

{ Get the data using the Recv method. }
RecvList.Clear;

BuffNdx := StrLen(Buffer);

RecvCnt := (Socket as TStreamSocket).Recv(

Buffer[BuffNdx], 2047 - BuffNdx);

{ Loop until all bytes received have been processed. }
Remaining := RecvCnt;

BuffPtr := Buffer;

while (Remaining > 0) do begin
{ All server replies end in cr/lf. }
CrLfPtr := StrPos(BuffPtr, CrLf);

{ If there is no cr/lf, we have a partial reply;
save it until next OnRead. }

if (CrLfPtr = nil) then
begin
(BuffPtr + Remaining)^ := #0;

PartialRecvBuffer := StrPas(BuffPtr);

Remaining := 0;

end
else { If a cr/lf, create a string list entry. }
begin
CrLfPtr^ := #0;

RecvList.Add(StrPas(BuffPtr));

Remaining := Remaining - (StrLen(BuffPtr) + 2);

BuffPtr := CrLfPtr + 2;

end;
end;

{ Process each of the replies in the string list. }
for i := 0 to RecvList.Count - 1 do begin
{ Status is first 3 bytes. }
Status := Copy(RecvList.Strings[i], 1, 3);

AddDiagnostic('RECV: ' + RecvList.Strings[i]);

if (FActionCompleted) then
Continue; { Ignore if nothing in process. }

{ For each type of command in process, set
FActionCompleted if status code indicates success. }

case WaitState of
wsConnect :

FActionCompleted := (Status = CONNECT_OK);

wsUser :

FActionCompleted := ((Status = USER_OK) or
(Status = USER_OK_PASS));

wsPass :

FActionCompleted := (Status = PASS_OK);

wsPasv :

if (Status = PASV_OK) then
begin
{ Save reply for FtpPassive. }
RecvData := RecvList.Strings[i];

FActionCompleted := True;

end;
wsType :

FActionCompleted := (Status = TYPE_OK);

wsCwd :

FActionCompleted := (Status = CWD_OK);

wsPort :

FActionCompleted := (Status = PORT_OK);

wsStor :

FActionCompleted := ((Status = STOR_OK) or
(Status = STOR_OK_OPEN));

wsSite :

FActionCompleted := (Status = SITE_OK);

On the Net
wsStorDone :

FActionCompleted := ((Status = STOR_DONE_OK) or
(Status = STOR_DONE_OK_CLOSE));

wsDele :

FActionCompleted := (Status = DELE_OK);

end;
end;

end;

{ OnWrite handler for all 3 sockets. }
procedure THsSocket.SktWrite(Sender: TObject;

Socket: TSocketBase);

begin
OnWriteFlag := True; { So SendSktData can continue. }

end;

End Listing Three
Begin Listing Four — Data Connection Routines
{ Set data connection type to ASCII or binary. }
function THsSocket.FtpSetType(FtpType: TFtpType) : Boolean;

begin
Result := False;

SetWaitState(wsType);

case FtpType of
ftBinary : SendCommand('TYPE I');

ftAscii : SendCommand('TYPE A');

end;

if (not ActionCompleted) then
begin
DisplayError('Unable to set type');

Exit;

end;

Result := True;

end;

{ Set up port-mode data connection. }
function THsSocket.FtpPort : Boolean;

var
Addr : string;
DotPos : Integer;

Msg : string;
i : Integer;

begin
{ Begin listening. }
Result := False;

try
{ Close socket if it is open. }
if (ListenSkt.ClientCount > 0) then
ListenSkt.CloseDown;

except
end;

try
ListenSkt.Port := '0'; { Any port. }
ListenSkt.Listen(TStreamSocket);

except
on E : Exception do begin
DisplayError('Listen port error: ' + E.Message);
Exit;

end;
end;

{ Build port data as 6 comma-separated fields. }
SetWaitState(wsPort);

Addr := CmdSkt.Conn.LocalAddress;

Msg := '';

{ First 4 fields are dot address fields. }
for i := 1 to 3 do begin

DotPos := Pos('.', Addr);
20 December 1997 Delphi Informant
Msg := Msg + Copy(Addr, 1, DotPos - 1) + ',';

Addr := Copy(Addr, DotPos + 1, Length(Addr));

end;

{ Last 2 fields are upper and lower bytes of port. }
Msg := Msg + Addr + ',';

Msg := Msg + IntToStr(ListenSkt.Conn.LocalPort div 256) +

',' + IntToStr(ListenSkt.Conn.LocalPort mod 256);

{ Send PORT command to tell server where to connect. }
SendCommand('PORT ' + Msg);

if (not ActionCompleted) then begin
DisplayError('Server did not accept PORT command');

Exit;

end;

PasvFlag := False;

Result := True;

end;

{ Set up passive-mode data connection. }
function THsSocket.FtpPassive : Boolean;

var
ChrPos : Integer;

Addr : string;
Port : Integer;

i : Integer;

begin
{ Request data socket address/port from server. }
Result := False;

SetWaitState(wsPasv);

SendCommand('PASV');

if (not ActionCompleted) then
begin
DisplayError('Unable to obtain data port using PASV');

Exit;

end;

{ IP address is first 4 comma-separated fields
in reply after open paren. }

ChrPos := Pos('(', RecvData);

if (ChrPos = 0) then
Exit;

RecvData := Copy(RecvData,ChrPos + 1,Length(RecvData));

Addr := '';

for i := 0 to 3 do begin
ChrPos := Pos(',', RecvData);

if (ChrPos = 0) then
Exit;

Addr := Addr + Copy(RecvData, 1, ChrPos - 1);

if (i < 3) then
Addr := Addr + '.';

RecvData := Copy(RecvData,ChrPos + 1,Length(RecvData));

end;

{ Port is last two fields. }
ChrPos := Pos(',', RecvData);

if (ChrPos = 0) then
Exit;

Port := StrToInt(Copy(RecvData, 1, ChrPos - 1)) * 256;

RecvData := Copy(RecvData, ChrPos + 1, Length(RecvData));

ChrPos := Pos(')', RecvData);

if (ChrPos = 0) then
Exit;

Port := Port + StrToInt(Copy(RecvData, 1, ChrPos - 1));

{ Open data connection. }
SetWaitState(wsDataConnect);

DataSkt.Address := Addr;

DataSkt.Port := IntToStr(Port);

try
CloseSkt(DataSkt);

DataSkt.Open(TStreamSocket);

except
on E : Exception do

On the Net
DisplayError('Data port open error: ' + E.Message);
end;

if (not ActionCompleted) then
begin
DisplayError('Unable to connect to data port');

Exit;

end;
PasvFlag := True;

Result := True;

end;

{ Event handler for OnRead of
passive and port data sockets. }

procedure THsSocket.DoDataSktRead(Socket: TSocketBase);

const
MAXIDX = 2047;

var
Buffer : array[0..MAXIDX] of Char;

Count : Integer;

begin

case WaitState of
{ List directory/retrieve file command in process. }
wsList, wsRetr :

{ Write the data to the output file. Reset
ActionCompleted wait to avoid timeout. }

try
Count := Socket.Recv(Buffer, MAXIDX + 1);

BlockWrite(OutputFile, Buffer, Count);

ResetTime := True;

except
AddDiagnostic('Read Failed');

end;
end;

end;

End Listing Four
21 December 1997 Delphi Informant

22 December 1997 Delphi Informant

Sights & Sounds
Delphi 1, 2, 3

By Robert Vivrette

TDrawShape =

private
Grabbed :

XX, YY :

procedure
Shift:

procedure
Shift:

procedure

end;

procedure TDr

Shift: TShi

begin
Grabbed :=

end;

procedure TDr

Shift: TShi

begin
BringToFron

SelectedSha

XX := X; YY

Grabbed :=

end;

procedure TDr

begin
if Grabbed

SetBounds

end;

Figure 1: Der
Quick on the Draw
A Drawing Program Shows Off Delphi’s RAD Abilities

Recently, a reader of The Unofficial Newsletter of Delphi Users e-mailed:
“How do I create a program that allows me to draw objects on the form,

move them around, etc.?” I started thinking about it, then sat down to see what
I could design. In just a shade over an hour, I completed a functional drawing
program. It can draw, move, and alter shapes, as well as save and load draw-
ings to disk. The entire project was simple to accomplish, primarily because it
took advantage of the power already in Delphi.
Basically, the application I came up with is a
drawing program. However, I am not speaking
of a paint-type program that manages bitmap
files. Instead, this program allows you to draw
squares, rectangles, circles, etc., that live on the
surface of a drawing document. If you don’t
like where a square is, drag it to a new loca-
tion. If you want to change its fill pattern,
color, or border, you can do that as well.
class(TShape)

 Boolean;

Integer;

MouseUp(Button: TMouseButton;

TShiftState; X, Y: Integer); override;
MouseDown(Button: TMouseButton;

TShiftState; X, Y: Integer); override;
MouseMove(Shift: TShiftState;

X, Y: Integer); override;

awShape.MouseUp(Button: TMouseButton;

ftState; X, Y: Integer);

False;

awShape.MouseDown(Button: TMouseButton;

ftState; X, Y: Integer);

t;

pe := Self;

 := Y;

True;

awShape.MouseMove(Shift: TShiftState;

X, Y: Integer);

then
(Left+X-XX, Top+Y-YY, Width, Height);

iving TDrawShape from TShape.
First, let’s analyze what we’ll be drawing. As
it turns out, Delphi has a graphic object
called TShape, which is a direct descendent
of TGraphicControl. A TShape object can
appear in six shapes:

a square
a rounded square
a rectangle
a rounded rectangle
a circle
an ellipse

Delphi developers needing a graphic shape
in their application can take a Shape compo-
nent, drop it on a form, and set various
properties defining its style, fill pattern,
color, line pattern, and width.

Enhancing TShape
Much of the behavior we want in our draw
program is available in TShape. First, it knows
how to exist on a form, paint itself, change
size, manage mouse actions, and modify its
appearance. All we really need to do is build a
system around TShape that allows the user (at
run time) to add, move, and delete copies of
these TShape objects. To add features to
TShape, I decided to create a new descendant
called TDrawShape. This descendant will add
one new ability to TShape — the ability to be
dragged on the form at run time. A definition
of the TDrawShape class is shown in Figure 1.

As you can see, we didn’t do much to TShape to
get TDrawShape. We added a private variable

Figure 2: The finished ObjDraw program.

Sights & Sounds
called Grabbed that indicates when the user has clicked the
mouse over the object and is trying to move it across the form. It
also has two additional private variables, XX and YY, that mark
the location where the user grabbed the object. The only other
difference is that TShape’s three mouse procedures — MouseUp,
MouseDown, and MouseMove — have been overridden.

Reviewing the implementation of these three event handlers,
you can see that MouseUp sets Grabbed to False. Logically, if
the user has released the mouse button, he or she is no
longer grabbing the object, right? The MouseDown method
first calls BringToFront. This method (which comes with
TShape) tells the object to bring itself to the top of its par-
ent’s Controls list. Because the parent of the shape will be the
form, BringToFront causes the shape to stack itself above all
other shapes on the form.

Next, we assign a reference of this shape to a global variable
called SelectedShape. This will allow methods of the form to
access the selected shape without having to hunt for it. Then
we save the X and Y values of the mouse pointer when the
mouse was clicked inside the shape (relative to the top and
left of the shape) and set its Grabbed value to True.

The MouseMove method verifies that the shape is selected,
and moves it to the current mouse pointer location. To calcu-
late the new location, we take the distance the mouse pointer
moved, and add the shape’s current Left and Top values.

The ObjDraw Program
Now let’s take a look at the main form. This is where we will
manage copies of the TDrawShape objects. Listing Five
(beginning on page 25) shows the code for this project, so
you can follow along as I describe its various capabilities.

As you can see from the finished product in Figure 2,
there is a toolbar at the top of the form that accesses the
program’s primary functions. The first toolbar button,
New Document, deletes any shapes on the form. The next
two buttons, Open File and Save File, will be described in
greater detail later.
23 December 1997 Delphi Informant
Next come buttons controlling the six basic shapes we can cre-
ate. Only one of these buttons can be down at a time (con-
trolled by setting their GroupIndex values to 1). These buttons
are linked to ShapeSelectClick’s event handler. This method
looks at the button’s Tag property from the generated event,
casts it as a TShapeType, then saves that value in the ObjType
variable. ObjType will be used to determine what kind of
object will be created when the user draws on the form.

The TShapeType mentioned is defined in Delphi with TShape,
and is an enumerated set of TShape’s possible styles. When
Delphi builds an enumerated type, each element has an ordinal
value assigned to it, based on where it was in the type declara-
tion. For example, the definition of TShapeType resembles
Delphi’s Extctrls.pas unit:

TShapeType =

(stRectangle, stSquare, stRoundRect,

stRoundSquare, stEllipse, stCircle);

In this case, stRectangle is represented internally as a 0,
stSquare as a 1, stRoundRect as a 2, and so on. Therefore, to
have all the shape buttons use the same event handler, I
assign this ordinal value to the appropriate button’s Tag prop-
erty. To determine which shape is being requested, I typecast
that Tag value to a TShapeType and save the result. (This
handy trick is used in a few places in this project.)

Listening to Messages
So the user has clicked one of the shape-selection buttons and
a TShapeType value has been stored in the variable ObjType. If
we want the user to be able to click and drag a new copy of
this shape onto the form, we must listen in on the form’s
mouse messages.

First, we take care of the form’s MouseDown event. Here, we
verify that it’s the left mouse button that generated the event,
save the mouse pointer’s current x and y coordinates, then set
Creating to True. This will tell the other mouse messages that
we’re creating a new shape.

Next comes the MouseMove event. We must verify the left
mouse button is down, and the Creating flag is True. If these
two conditions are met, make sure the x and y coordinates
haven’t moved left or above (respectively) of the original loca-
tion of the mouse pointer. This stops the user from creating
an object flipped backwards or upside down. After limiting
the X and Y values, draw a “rubber-banding line” with a local
procedure I call DrawGhost. This is a technique you see in
many applications — including Windows itself. When you’re
on the Windows desktop and you want to select a group of
objects, you can click and drag a selection rectangle around
those objects. This is really nothing more than one of these
rubber-banding lines. In our case, we want to draw the select-
ed shape, but with a pen style of psDot and a pen mode of
pmXOr. These values are properties of the form’s canvas and
are initialized to these values in the FormCreate.

The psDot pen style causes the rubber-banding line to draw
dotted, and the pmXOr pen mode causes it to be drawn in

Sights & Sounds

: Views of the formatting popup menu.
XOR mode. XOR mode is a neat trick you can do
with Windows to draw a line and remove it from
the form. In a nutshell, if you draw a line in XOR
mode, you will see the line on the form. If you
draw it again in the same location, it will restore
the form to its original appearance. Additionally, an
XORed line can be drawn on any color form and it
will always appear.

Draw the object XORed once (by means of the
DrawGhost procedure) to remove the object from
its old location, then update the mouse coordinates and draw
it again at its new location. As the mouse continues to move,
we continue this “Undraw/Update/Redraw” sequence, until
the user releases the mouse button.

This brings us to the form’s MouseUp event. Verify the left
mouse button was released and the Creating flag was set to
True. Next, verify the mouse moved at least one pixel in both
the x and y axis between MouseDown and MouseUp. This
ensures that we don’t create any shapes without width or
height. Next, undraw the final piece of the rubber-banding
image using the DrawGhost procedure.

Creating the Shape
Now it’s time to create the instance of TDrawShape. To do
this, we instantiate a copy of TDrawShape and assign it to the
variable NewObj. Then we set various properties of NewObj:

the Parent property is set to the main form;
the Shape property is set to the value we saved when the
user clicked the shape selection buttons;
the Cursor property is set to crHandPoint;
the PopupMenu property is set to FormatMenu.

The TPopupMenu has been placed on the form to allow
various states of each shape to be changed. Because we
don’t want one popup menu for each shape, connect each
shape created to the single popup menu on the main form.
This ensures the cursor will automatically change to a hand
pointer when a user passes over any shape on the form
(because of the assignment to NewObj’s Cursor property). It
also allows users to access a right-click formatting menu.
(More on the menu a little later.)

The last few steps in MouseUp are to set the shape’s
bounds (keeping the width and height equal in the case of
squares, rounded squares, and circles), and call a function
to count the number of objects currently on the form (to
update the “Objects” label at the top of the application).
This function loops through the form’s Controls array and
counts the instances of TDrawShape.

A Few Extras
With the steps covered so far, we’ve built a functional shape-
drawing program. The user can choose a shape from one of
the buttons on the toolbar, and can click and drag a copy of
that shape on the form. This portion is handled through the
form’s mouse methods that we supplanted. Once the shape
has been created, the user can grab the shape and move it

Figure 3
24 December 1997 Delphi Informant
around the form. This portion is handled through the mouse
methods we altered in TDrawShape.

We can do even better with just a little extra effort. As I
mentioned earlier, there is a formatting menu; its contents
are shown in Figure 3. This menu is linked to every shape
placed on the form. When the user right-clicks on the shape,
this menu is displayed. Note that when the user right-clicks
on a shape, it moves to the top of the form and becomes the
selected shape. A reference to this shape is kept in the
SelectedShape variable.

The first item on the menu is Delete Object, which calls
the Free method of the SelectedShape object. Because a
shape has been deleted, it then needs to call CountObjects
to update the caption on the toolbar. The Brush Color and
Pen Color menu items call one of Delphi’s ColorDialog
components. The color of the brush or pen is passed into
the dialog box (i.e. it’s shown), and the color chosen by
the user is then fed back into the shape’s pen or brush
Color property. This is handled through the
BrushColorClick and PenColorClick methods, respectively.

The brush and pen styles are handled in a similar fashion to
the way we selected the shape from the buttons on the toolbar.
Each menu item under these sub-menus has a Tag property
that corresponds to the ordinal value of that style. Then it’s a
simple matter of typecasting the chosen tag as a TBrushStyle
or a TPenStyle, and assigning that value to the appropriate
property in the currently selected shape.

The Pen Width menu items have the width itself in the menu
item’s Tag property, and are likewise copied into the currently
selected shape’s Pen.Width property. Note that the menu items
in each sub-menu point to the same event handler. For exam-
ple, all the Pen Style items point to the PenStyleClick event han-
dler. This is a good example of how to take advantage of the
power and flexibility of the Sender parameter in event handlers.

Saving and Retrieving the Shapes
A drawing program wouldn’t be of much use if you couldn’t
save and load drawings. As it turns out, this too is simple to
accomplish. Create an instance of a TFileStream object (speci-
fying the name of the file) and read or write the appropriate
objects to or from that stream. In the case of the reading from
the stream, we present one of Delphi’s OpenDialog compo-
nents, and allow the user to pick a previously saved file. The
dialog has a filter pre-defined for “DrawObj Files” using the

Sights & Sounds
wildcard *.obd. After the user picks a file, all existing objects
on the form are deleted and the TFileStream object is created.

Next, go into a loop that continues as long as the position of
the TFileStream pointer is before the end of the file (meaning
there is data left to read):

while FS.Position < FS.Size do begin
NewObj := TDrawShape.Create(Self);

NewObj.Parent := Self;

NewObj.PopupMenu := FormatMenu;

FS.ReadComponent(NewObj);

end;

If there is something to read, we create a new instance of a
TDrawShape object, set the parent as the main form, and call
Delphi’s ReadComponent method to read its component data
from the stream. When we reach the end of the file, the
TFileStream object is destroyed.

To save the objects, apply the same logic in reverse. Present a
SaveDialog component, obtain a file name, then create the
TFileStream object. Loop through the form’s Controls array, and
for each TDrawShape object found, use WriteComponent to tell
the component to write itself out to the stream:

for a := 0 to ControlCount-1 do
if Controls[a] is TDrawShape then

FS.WriteComponent(Controls[a] as TDrawShape);

Conclusion
As you can see, it doesn’t take many brain cells to put togeth-
er this simple drawing program. This is because we’re taking
advantage of Delphi’s capabilities. Delphi includes the TShape
component, which we use as the basis of the objects we cre-
ate. It also provides simple streaming capabilities to allow us
to save and retrieve groups of objects.

Could we go further with this project? Absolutely! There are a
number of things I can come up with off the top of my head.
The first would be to allow resizing of objects once they have
been placed. Ideally, this should be integrated at the TDrawShape
level so the remaining programs’ behavior wouldn’t require
changes. We may want to add other features, such as plain lines
or floating text objects. The topics covered in this article will give
you a good start toward adding some of these features yourself.

This just goes to show that with Delphi’s RAD capabilities,
anyone can be quick on the draw. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\DEC\DI9712RV.

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached via e-mail at RobertV@mail.com.
25 December 1997 Delphi Informant
Begin Listing Five — The ObjDraw project
unit Unit1;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, Menus, Buttons, ExtCtrls, StdCtrls;

type
TDrawShape = class(TShape)
private
Grabbed: Boolean;

XX,YY : Integer;

procedure MouseUp(Button: TMouseButton;

Shift: TShiftState; X, Y: Integer); override;
procedure MouseDown(Button: TMouseButton;

Shift: TShiftState; X, Y: Integer); override;
procedure MouseMove(Shift: TShiftState;

X, Y: Integer); override;
end;

TForm1 = class(TForm)
FormatMenu: TPopupMenu;

mnuDelete: TMenuItem; // Main popup menu items.
mnuSep1: TMenuItem;

mnuBrushColor: TMenuItem;

mnuBrushStyle: TMenuItem;

mnuSep2: TMenuItem;

mnuPenColor: TMenuItem;

mnuPenStyle: TMenuItem;

mnuPenWidth: TMenuItem;

mnuBrushBDiag: TMenuItem; // Brush Style menu items.
mnuBrushClear: TMenuItem;

mnuBrushCross: TMenuItem;

mnuBrushDiagCross: TMenuItem;

mnuBrushFDiag: TMenuItem;

mnuBrushHorizontal: TMenuItem;

mnuBrushSolid: TMenuItem;

mnuBrushVertical: TMenuItem;

mnuPenClear: TMenuItem; // Pen Style menu items.
mnuPenDash: TMenuItem;

mnuPenDashDot: TMenuItem;

mnuPenDashDotDot: TMenuItem;

mnuPenDot: TMenuItem;

mnuPenInsideFrame: TMenuItem;

mnuPenSolid: TMenuItem;

Width0: TMenuItem; // Pen Width menu items.
Width1: TMenuItem;

Width2: TMenuItem;

Width3: TMenuItem;

Width4: TMenuItem;

Width5: TMenuItem;

Width6: TMenuItem;

pnlToolbar: TPanel;

spdNew: TSpeedButton; // Toolbar buttons.
spdOpenFile: TSpeedButton;

spdSaveFile: TSpeedButton;

spdSquare: TSpeedButton;

spdSquareR: TSpeedButton;

spdRect: TSpeedButton;

spdRectR: TSpeedButton;

spdCircle: TSpeedButton;

spdEllipse: TSpeedButton;

lblCount: TLabel;

dlgColor: TColorDialog;

dlgSave: TSaveDialog;

dlgOpen: TOpenDialog;

procedure FormCreate(Sender: TObject);

procedure FormMouseUp(Sender: TObject;

Button: TMouseButton; Shift: TShiftState;

X, Y: Integer);

procedure FormMouseDown(Sender: TObject;

Button: TMouseButton; Shift: TShiftState;

X, Y: Integer);

procedure FormMouseMove(Sender: TObject;

Shift: TShiftState; X, Y: Integer);

procedure DrawGhost;

procedure ShapeSelectClick(Sender: TObject);

procedure DeleteClick(Sender: TObject);

procedure BrushColorClick(Sender: TObject);

Sights & Sounds
procedure BrushStyleClick(Sender: TObject);

procedure PenColorClick(Sender: TObject);

procedure PenStyleClick(Sender: TObject);

procedure PenWidthClick(Sender: TObject);

procedure CountObjects;

procedure DeleteObjects;

procedure spdNewClick(Sender: TObject);

procedure spdOpenFileClick(Sender: TObject);

procedure spdSaveFileClick(Sender: TObject);

private
ObjType : TShapeType;

NewObj : TDrawShape;

X1,Y1 : Integer;

X2,Y2 : Integer;

Creating : Boolean;

FS : TFileStream;

end;

var
Form1: TForm1;

SelectedShape : TDrawShape;

implementation

{$R *.DFM}

function Min(A, B: Integer): Integer;

begin
if A < B then
Result := A

else
Result := B;

end;

procedure TDrawShape.MouseUp(Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);

begin
Grabbed := False;

end;

procedure TDrawShape.MouseDown(Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);

begin
BringToFront;

SelectedShape := Self;

XX := X; YY := Y;

Grabbed := True;

end;

procedure TDrawShape.MouseMove(Shift: TShiftState;

X, Y: Integer);

begin
if Grabbed then
SetBounds(Left+X-XX, Top+Y-YY, Width, Height);

end;

procedure TForm1.FormCreate(Sender: TObject);

begin
Canvas.Pen.Mode := pmXOr;

Canvas.Pen.Style := psDot;

ObjType := stCircle;

CountObjects;

Creating := False;

ShapeSelectClick(spdSquare);

end;

procedure TForm1.FormMouseUp(Sender: TObject;

Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

var
L,T,W,H : Integer;

begin
if not Creating then
Exit;

if Button <> mbLeft then
Exit;

DrawGhost;

if (X<=X1) or (Y<=Y1) then
Exit;

NewObj := TDrawShape.Create(Self);

with NewObj do begin
26 December 1997 Delphi Informant
Parent := Self;

Shape := ObjType;

Cursor := crHandPoint;

PopupMenu := FormatMenu;

L := X1; W := X-X1;

T := Y1; H := Y-Y1;

if ObjType in [stCircle,stSquare,stRoundSquare] then
if W < H then
H := W

else
W := H;

SetBounds(L,T,W,H);

end;

CountObjects;

Creating := False;

end;

procedure TForm1.FormMouseDown(Sender: TObject;

Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
if Button <> mbLeft then
Exit;

X1 := X; Y1 := Y; X2 := X; Y2 := Y;

Creating := True;

end;
procedure TForm1.FormMouseMove(Sender: TObject;

Shift: TShiftState; X, Y: Integer);

begin
if Creating and (ssLeft in Shift) then

begin
if X <= X1 then

X := X1+1;

if Y <= Y1 then
Y := Y1+1;

DrawGhost; // Undraw the last image.
X2 := X; Y2 := Y;

DrawGhost; // Draw the new image.
end;

end;

procedure TForm1.DrawGhost;

var
S : Integer;

begin
S := Min(X2-X1,Y2-Y1);

with Canvas do
case ObjType of
stCircle :

Arc(X1,Y1,X1+S,Y1+S,X1,Y1,X1,Y1);

stEllipse :

Arc(X1,Y1,X2,Y2,X1,Y1,X1,Y1);

stSquare,

stRoundSquare :

begin
PolyLine([Point(X1,Y1),Point(X1+S,Y1),

Point(X1+S,Y1+S)]);

PolyLine([Point(X1,Y1),Point(X1,Y1+S),

Point(X1+S,Y1+S)]);

end;
stRectangle,

stRoundRect :

begin
PolyLine([Point(X1,Y1),Point(X2,Y1),

Point(X2,Y2)]);

PolyLine([Point(X1,Y1),Point(X1,Y2),

Point(X2,Y2)]);

end;
end;

end;

procedure TForm1.ShapeSelectClick(Sender: TObject);

begin
ObjType := TShapeType((Sender as TSpeedButton).Tag);

end;

procedure TForm1.DeleteClick(Sender: TObject);

begin
SelectedShape.Free;

CountObjects;

end;

Sights & Sounds
procedure TForm1.PenColorClick(Sender: TObject);

begin
dlgColor.Color := SelectedShape.Pen.Color;

if dlgColor.Execute then
SelectedShape.Pen.Color := dlgColor.Color;

end;

procedure TForm1.PenStyleClick(Sender: TObject);

begin
SelectedShape.Pen.Style :=

TPenStyle((Sender as TMenuItem).Tag);

end;

procedure TForm1.PenWidthClick(Sender: TObject);

begin
SelectedShape.Pen.Width := (Sender as TMenuItem).Tag;

end;

procedure TForm1.BrushColorClick(Sender: TObject);

begin
dlgColor.Color := SelectedShape.Brush.Color;

if dlgColor.Execute then
SelectedShape.Brush.Color := dlgColor.Color;

end;

procedure TForm1.BrushStyleClick(Sender: TObject);

begin
SelectedShape.Brush.Style :=

TBrushStyle((Sender as TMenuItem).Tag);

end;

procedure TForm1.CountObjects;

var
a, b : Integer;

begin
b := 0;

for a := 0 to ControlCount-1 do
if Controls[a] is TDrawShape then

Inc(b);

lblCount.Caption := 'Objects: ' + IntToStr(b);

end;

procedure TForm1.DeleteObjects;

var
a : Integer;

OneDeleted : Boolean;

begin
repeat

OneDeleted := False;

for a := 0 to ControlCount-1 do
if Controls[a] is TDrawShape then
begin
(Controls[a] as TDrawShape).Free;

OneDeleted := True;

Break;

end;
until not OneDeleted;

CountObjects;

end;

procedure TForm1.spdNewClick(Sender: TObject);

begin
DeleteObjects;

end;

procedure TForm1.spdOpenFileClick(Sender: TObject);

begin
dlgOpen.FileName := '';

if dlgOpen.Execute then
begin

DeleteObjects;

FS := TFileStream.Create(dlgOpen.FileName,

fmOpenRead or fmShareDenyWrite);

try
while FS.Position < FS.Size do begin
NewObj := TDrawShape.Create(Self);

NewObj.Parent := Self;

NewObj.PopupMenu := FormatMenu;

FS.ReadComponent(NewObj);

end;
finally FS.Free;
27 December 1997 Delphi Informant
end;
end;

CountObjects;

end;

procedure TForm1.spdSaveFileClick(Sender: TObject);

var
a : Integer;

begin
if dlgSave.Execute then
begin

FS := TFileStream.Create(dlgSave.FileName,

fmCreate or fmShareDenyWrite);

try
for a := 0 to ControlCount-1 do
if Controls[a] is TDrawShape then

FS.WriteComponent(Controls[a] as TDrawShape);

finally FS.Free;

end;
end;

end;

end.

End Listing Five

28 December 1997 Delphi Informant

The API Calls
BDE API / Delphi 1, 2, 3

By Bill Todd
Using the BDE API
Part II: Troubleshooting and Problem Solving

Although much of the Borland Database Engine’s API is surfaced in Delphi,
some useful tools are only available by calling the BDE API directly. Last

month’s installment of this two-part series covered routine tasks such as table
packing and copying, along with group record deletion and creating perma-
nent aliases. This month, we’ll explore the use of Paradox tables with read-
only media, how to use persistent locks as semaphores, sorting local tables,
and more.
Using Paradox Tables on
Read-Only Media
The problem with trying to put Paradox
tables on read-only media (such as a CD-
ROM) is that the BDE must create and
write to a lock-control file named
Pdoxusrs.lck, which must be created in the
directory that contains the tables. Because
it can’t be created at run time when the
tables reside on a read-only device, you
must create a special version of this file to
include with the tables. This special ver-
sion of Pdoxusrs.lck is called a directory-
lock file. When the BDE sees this file, it
assumes all tables in the directory are read-
only, and doesn’t try to write to the lock
file. While the 32-bit BDE should detect
read-only media without this lock file, the
16-bit BDE will not. In any event, creating
the file doesn’t cause any problems with
the 32-bit BDE.

To create the directory-lock file, create a new
project. Add a Database component and a
Button component to the form. Modify the
Database component’s DatabaseName prop-
erty to C:\Lockdir where C:\Lockdir is the
directory in which you want the lock file cre-
ated. Then set its Connected property to True.
Now add the following code to the Button
component’s OnClick event handler:

Check(DbiAcqPersistTableLock(

Database1.Handle,

'PARADOX.DRO', 'PARADOX'));
where Database1 is the name of the Database
component. (Note: As discussed last month,
you must include the BDE source files: In
Delphi 1, the DbiProcs, DbiTypes, and
DbiErrs units must be included in the uses
clause; in Delphi 2 and 3, the BDE unit
must be included.)

When you run the program and press the
button, two files — Pdoxusrs.lck and
Paradox.lck — will be written to the speci-
fied directory. Delete Paradox.lck, then copy
Pdoxusrs.lck to the directory that contains
the tables to be placed on the CD-ROM, so
it will be included with the tables.

Using Persistent Locks as Semaphores
One difficult problem to solve in a database
application is how to communicate between
multiple users on different workstations. For
example, suppose you have a system that
requires some initialization code to be run by
the first workstation that starts the system
each day, but you don’t want this code to be
run more than once. One solution is to have
the first workstation update a record in a
table, and have the others read the table and
check the date in the record.

However, there’s a faster way that requires less
network traffic and disk I/O. You can place a
persistent, exclusive lock on a table that doesn’t
exist, then simply have the program, upon
start-up, try to lock the non-existent table. If

procedure dgGetNetFileUsers(UserList: TStringList);

var
UserCur: hDbiCur;

pUserDes: pUserDesc;

begin
Check(DbiOpenUserList(UserCur));

GetMem(pUserDes, SizeOf(UserDesc));

try
FillChar(pUserDes^, SizeOf(UserDesc), #0);

while (DbiGetNextRecord(UserCur, DbiNoLock,

pUserDes, nil) = DBIERR_NONE) do
UserList.Add(StrPas(pUserDes^.szUserName));

finally
FreeMem(pUserDes, SizeOf(UserDesc));

DbiCloseCursor(UserCur);

end;
end;

Figure 1: Getting a list of users.

procedure dgSortTable(

{ Database that contains table to sort. }

Db: TDatabase;

{ TTable to sort. }

SortTbl: TTable;

{ Numbers of fields to sort on. }

const SortFields: array of Word;

{ True for case-insensitive sort. }

const SortCase: array of Bool;
{ sortASCEND or sortDESCEND. }

const SortOrd: array of SORTOrder;

{ True to delete duplicate records. }

RemoveDups: Boolean);

{ Sorts an unkeyed table into itself. The TDatabase passed

as the first parameter must be connected. The TTable

passed as the second parameter must be closed. If an

exclusive lock cannot be obtained on the table, an

EDBEngineError exception will be raised. }

var
{ Handle of database holding table. }

hDb: hDBIdb;

{ Table name. }

pTblName: array [0..DBIMAXPATHLEN] of Char;

{ Number of records to sort. }

NumRecs: LongInt;

{ Numbers of fields to sort on. }

SortFldCount: Word;

begin
hDb := Db.Handle;

StrPCopy(pTblName, SortTbl.TableName);

SortFldCount := High(SortFields) + 1;

Check(DbiSortTable(hDB, pTblName, szPARADOX, nil, nil,
nil, nil, SortFldCount, @SortFields,
@SortCase, @SortOrd, nil, RemoveDups,
nil, NumRecs));

end;

Figure 2: Sorting a table.

The API Calls
the lock succeeds, the program runs the initialization code. If
the lock fails, another workstation is running the program, and
the initialization code can be skipped.

To place a persistent, exclusive lock, call:

DbiAcqPersistTableLock(Db.Handle, 'foo.db', '');

where the first parameter is the Handle property of a TDatabase
object pointing to the directory that contains the non-existent
table (the directory where the lock file will be created). The
second parameter is the name of the table. The third parameter
is the driver type, and is optional if you include a file extension
on the table name. To release the lock, call:

DbiRelPersistTableLock(Db.Handle, 'foo.db', '');

using the same parameters as in the call to
DbiAcqPersistTableLock.

Getting a List of Network Users
If you have an application that uses Paradox tables on a net-
work, you can get a list of all the users of a network control file
by calling the function shown in Figure 1. The var block
defines a cursor variable and a pointer to a user-descriptor
structure. The call to DbiOpenUserList opens the cursor to
the list of users in the network control file, the call to GetMem
allocates memory to hold the user descriptor structure, and the
call to FillChar initializes it to binary zero. DbiGetNextRecord
reads the next record from the user list. The statement:

UserList.Add(StrPas(pUserDes^.szUserName));

extracts the UserName value from the user descriptor, con-
verts it to a Pascal string, and adds it to the UserList string
list passed to the function as a parameter. The while loop
continues until DbiGetNextRecord returns an error code,
indicating the end of the list. Finally, the memory for the
descriptor is released and the cursor is closed.

Sorting Local Tables
Although Delphi lets you, by using different indices, view a
table in any order you wish, it does not surface the BDE’s
ability to physically sort a table. If you sort an unkeyed table,
29 December 1997 Delphi Informant
you can sort it in place; that is, the sorted result can be placed
in the same table. Because keyed tables must be maintained in
order by their primary keys when you sort a keyed table, the
sorted records must be placed in a new table. The dgSortTable
function shown in Figure 2 lets you sort an unkeyed table.

This function takes the following six parameters:
Db: A TDatabase component connected to the database
that contains the table you want to sort. The Connected
property of the TDatabase must be set to True.
SortTbl: A TTable component that contains the name of
the table you want to sort. The TTable must be closed,
because the DbiSortTable function that performs the sort
must be able to open the table for exclusive use.
SortFields: An array of type Word that contains one ele-
ment for each field to be sorted. The elements contain the
field numbers in the order they are to be used for the sort.
For example, if the first field you want to sort on is the
third field in the table’s structure, then the value of the
first element in the array would be 3. Note that the num-
ber of the first field in the table’s structure is one, not zero.
SortCase: An array of type Bool with one element for each
field to be sorted. If the value of an element is True, then
the sort on the corresponding field in SortFields is case-
insensitive. If the value is False, the sort on that field is
case-sensitive. The case-sensitivity setting affects only
string fields.
SortOrd: An array of type SORTOrder that specifies
whether the fields in the SortFields array should be
sorted in ascending or descending order. To sort a field

The API Calls
in ascending order, assign the constant sortASCEND to
that field’s element of the array. To sort in descending
order, use sortDESCEND.
RemoveDups: If True, then duplicate records will be
removed. If False, duplicate records will be retained.
Records are compared on the fields specified in SortFields
to determine if they’re duplicates.

The function begins by assigning the Database component’s
BDE handle to the hDb variable, and converting the table’s
name to a null-terminated string, then storing it in
pTblName. The next line determines the number of fields
used for the sort, by using the High function to get the high-
est value of the index of the SortFields array. Because the array
is zero-based, the number of elements in the array is the high-
est index value, plus one. This works correctly because no
matter how the array is declared inside the procedure, the
open array parameter behaves as a zero-based array.

DbiSortTable is called using the Check procedure to raise an
exception if an error occurs. The nil parameters are:

hSrcCur: A cursor handle to the table to be sorted. You
can use this to specify the table instead of using the table-
name and driver-type parameters.
pszSortedName: The name of the destination table if the
sorted output is being placed in a new table.
phSortedHandle: A cursor handle to the table that received
the sorted output is returned in this parameter.
hDestCursor: If you are sorting into a destination table
other than the source table, you can pass a cursor handle
to the destination table instead of identifying it by name
and driver type. This parameter would be the Handle
property of a TTable component.
ppfsortFn: An array of pointers to functions that perform
the comparison between fields to determine which is
greater.
hDuplicatesCur: If RemoveDups is True, you can provide a
cursor to a table where you want any moved duplicate
records to be placed.

Editing the BDE Configuration File
One problem with distributing Delphi programs that employ
the BDE is that you may need to ensure that certain settings
have been made in the BDE configuration program. While
you can give the end user instructions for using the BDE
configuration program, it’s much easier — and more reliable
for the user — if you can change any necessary settings under
program control. This is particularly useful if you use an
installation program that allows you to call custom DLLs as
part of the installation process.

The BDE API function that provides access to the BDE con-
figuration file is DbiOpenCfgInfoList; it takes the following
parameters:

HCfg: The configuration-file handle. This parameter must
be nil.
eOpenMode: Can be either DbiReadWrite or
DbiReadOnly.
30 December 1997 Delphi Informant
eConfigMode: Must be cfgPersistent; it’s the only valid value.
pszCfgPath: The path to the node in the configuration file
to work with.
phCur: A cursor handle initialized by the call; this gives you
a handle to the specified node in the configuration file.

Working with the BDE configuration file is different from
working with tables, because the configuration file has a
hierarchical structure much like the structure of the
Windows 95/NT registry. When you open the configura-
tion file, you must specify a path to a node in the hierar-
chy. You can then treat the nodes that are immediately
below the node you specified as though they’re records in a
table, and read and write them.

However, there are restrictions on updating the nodes.
First, you can update only bottom-level (leaf) nodes; that
is, nodes that don’t have any nodes below them in the hier-
archy. Second, the only thing you can change about a leaf
node is its value.

Suppose you want to set the value of the Local Share
option on the System page of the BDE configuration
program to True. The path to the node that contains
the Local Share parameter is \SYSTEM\INIT. The root
node of the configuration file is identified with a single
backslash, and the nodes below it by their names. The
dgUpdateBDEConfig procedure shown in Listing Six (on
page 31) lets you update an entry in the BDE configura-
tion file.

The procedure begins by declaring three variables. The
first, hCur, is of type hDbiCur, and provides the cursor to
the configuration file. The second variable, pDesc, is of
type CfgDesc. This structure contains variables that, in
turn, contain the information about each entry in the con-
figuration file. (For a detailed description of the descriptor,
see “CfgDesc” in the BDE online Help.) The call to
FillChar fills the descriptor structure with nulls. The third
variable, pPath, holds the path to the desired file node as a
null-terminated string.

The call to DbiInit initializes the BDE session. Next, the
path passed as a parameter is converted to a null-terminated
string by calling StrPCopy. The statement that follows is
the call to DbiOpenCfgInfoList. After this call, hCur is a
cursor to the records (nodes) below the node specified in
the Path parameter.

Next comes the while loop that reads each node by calling
DbiGetNextRecord. The first parameter to DbiGetNextRecord
is the open cursor to the configuration file. The second parame-
ter specifies the type of record lock required: DbiNoLock,
DbiReadLock or DbiWriteLock. In this case, a write lock is
requested so the record can be modified. The next state-
ment converts the szNodeName field of the descriptor
structure to a Pascal string, and compares it to the CfgNode
parameter passed to this procedure.

ADOX\INIT\ \DRIVERS\PARADOX\TABLE CREATE\

LEVEL
BLOCK SIZE
STRICTINTEGRITY

The API Calls
Make sure the para-
meter you pass
matches the node
name you’re searching
for exactly. If this is
the desired node, the
call to StrPCopy con-
verts the new value
passed to the proce-
dure to a null-termi-
nated string, and
places it in the szValue field of the descriptor.

The call to DbiModifyRecord updates the record. The first
two parameters to DbiModifyRecord are the cursor and
descriptor structures, respectively. The third is a Boolean
value that specifies whether the lock is to be released after
the record is updated. Setting this parameter to True releases
the lock. The code in the finally block closes the cursor and
ends the BDE session.

By now you must be wondering how to find the paths and
names to use for the various parameters you may want to
change; the table in Figure 3 contains the ones you’re most
likely to find useful.

Further Investigation
If you need a BDE-programming technique not described
in this series, you’ll have to do a little detective work; the
paths and parameter names aren’t documented.

However, if you call DbiOpenCfgInfoList with a path of
“\”, you can then call DbiGetNextRecord in a loop to
retrieve the name of all the first-level nodes. You can do
the same for each of the first-level nodes, to display the
names of the second-level nodes, and so on until you’ve
displayed the entire tree. The sample program also includes
a function that returns the value of a parameter in the
BDE configuration file. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\DEC\DI9712BT.

Bill Todd is President of The Database Group, Inc., a Phoenix-area consulting and
development company. He is a Contributing Editor of Delphi Informant; co-author
of Delphi: A Developer’s Guide [M&T Books, 1995], Creating Paradox for
Windows Applications [New Riders Publishing, 1994], and Paradox for Windows
Power Programming [QUE, 1995]; a member of Team Borland; and a speaker at
every Borland Developers Conference. He can be reached at (602) 802-0178, or
on CompuServe at 71333,2146.

\SYSTEM\INIT\ \DRIVERS\PAR

LOCAL SHARE NET DIR
MINBUFSIZE LANGDRIVER
MAXBUFSIZE
MAXFILEHANDLES
LANGDRIVER
AUTO ODBC
DEFAULT DRIVER

Figure 3: Parameter paths and names.
31 December 1997 Delphi Informant
Begin Listing Six — Modify the BDE configuration file
procedure dgUpdateBDEConfig(CfgPath, CfgNode,

CfgValue: string);
{ Updates an entry in the BDE configuration file.

Parameters:

CfgPath: Path to the node you want to change.

CfgNode: Name of the node you want to change.

CfgValue: New value for the node.

The following lists the path to some useful nodes.

\SYSTEM\INIT

LOCAL SHARE

MINBUFSIZE

MAXBUFSIZE

MAXFILEHANDLES

LANGDRIVER

AUTO ODBC

DEFAULT DRIVER

\DRIVERS\PARADOX\INIT

NET DIR

LANGDRIVER

\DRIVERS\PARADOX\TABLE CREATE

LEVEL

BLOCK SIZE

STRICTINTEGRITY

}

var
hCur: hDbiCur; { Cursor handle. }

pDesc: CfgDesc; { Configuration descriptor. }

pPath: array [0..DBIMAXPATHLEN] of Char;

begin
FillChar(pDesc, SizeOf(CfgDesc), #0);

{ Initialize the BDE session. }

Check(DbiInit(nil));
{ Convert path to null terminated string. }

StrPCopy(pPath, CfgPath);

{ Open the configuration file. }

Check(DbiOpenCfgInfoList(nil, DbiReadWrite,
cfgPersistent, pPath, hCur));

try
{ Read until you find the right node. }

while DbiGetNextRecord(hCur, DbiWriteLock, @pDesc,

nil) = DBIERR_NONE do begin
if UpperCase(StrPas(pDesc.szNodeName)) =

UpperCase(CfgNode) then
begin
{ Put the new value in the descriptor. }

StrPCopy(pDesc.szValue, CfgValue);

{ Update the record. }

Check(DbiModifyRecord(hCur, @pDesc, True));

Break;

end; { if }
end; { while }

finally
{ Close the configuration file's cursor. }

Check(DbiCloseCursor(hCur));

{ End the BDE session. }

DbiExit;

end; { try }
end;

End Listing Six

32 December 1997 Delphi Informant

DBNavigator
Delphi 3

By Cary Jensen, Ph.D.

Figure 1: The
Combine and Conquer
An Introduction to Component Templates

Delphi 3 allows you to group one or more components, along with any
event handlers you’ve assigned to them, and add them to your

Component palette. Such collections of objects are called component templates,
and they provide yet another tool for quickly creating sophisticated forms and
dialog boxes.

While component templates can be useful in a
number of situations, they’re not a replacement
for traditional component development. This
month’s “DBNavigator” discusses how to create
component templates, how to use them, and
when you should forgo them for true objects.

You create a component template by select-
ing one or more components you’ve placed
onto a form, then selecting Component |

Create Component Template to display the
Component Template Information dialog
box (see Figure 1). Enter the name of the
template, choose the Component-palette
page on which it will appear, and optionally
define a custom bitmap that will represent
the component on that page.

After you’ve created a component template,
you can quickly duplicate the components
that make up the template by selecting the
icon representing the component template
from the Component palette, and dropping
it onto a form or data module. The compo-
nents placed on the form duplicate the rela-
tive positions of the objects originally saved,
Component Template Information dialog box.
as well as any design-time properties and
event handlers assigned to them.

Component templates are similar to the
templates in the Object Repository. Those
in the repository, however, must be based
on a container, such as a form, data mod-
ule, or QuickRep component. Because of
this, the Object Repository is not well suit-
ed for small groups of related components
that will normally appear in a container
with other components.

The following example demonstrates how to
create a component template that has the basic
elements for displaying data in a DBGrid:
1) Create a new form; it can be associated

with an existing project, or you can create it
as a form outside of a project (it will be dis-
carded at the end of the example anyway).

2) Add a Panel component and set its
BevelOuter property to bvNone, and its
Align property to alClient.

3) Add a DBNavigator and DBGrid compo-
nent, making sure they are inside the
panel. Set the DBNavigator’s Align prop-
erty to alTop, and the DBGrid’s Align
property to alClient.

4) Add a DataSource and Table component.
Set the DataSource’s DataSet property to
Table1, and the DBNavigator’s and the
DBGrid’s DataSource property to
DataSource1. Your form should look like
Figure 2.

You are now ready to save these components
and their properties as a template. Select Edit |

Select All to select all the components on
the form. Next, select Component | Create

Figure 2: Creating a component template.

Figure 3: The controls on this form were placed from the com-
ponent template.

Figure 4: Creating a template to validate a date range.

DBNavigator
Component Template to display the Component Template
Information dialog box. In Component name, enter
PanelTemplate, and select OK to save the template.

To demonstrate the use of the new template, close the
form you’ve been working with (it’s not necessary to save
it). Next, select File | New Application to create a new
application. Go to the Templates page of the Component
palette, select the PanelTemplate component, and drop it
onto the new project’s form. All components that were
part of the template are placed on your form. Furthermore,
the properties you set at run time are already defined for
these objects. To turn this form into a usable table view,
set the DatabaseName property of Table1 to DBDEMOS, the
TableName property to CUSTOMER.DB, and the Active prop-
erty to True. Now run the form. This form, similar to the
one shown in Figure 3, displays the data from the
Customer table, and permits you to edit it.

Creating Templates with Event Handlers
While the preceding example demonstrated the ease with
which you can create customized sets of components, it
didn’t demonstrate all the power of this technique.
Specifically, this example didn’t include event handlers
associated with the components. The following example
demonstrates how to save a group of components that rely
on an event handler.
33 December 1997 Delphi Informant
In this example, we’ll create a date-range component — one
that enables a user to enter a beginning and an ending range
of dates. What’s more, this component will include the code
necessary to validate the dates entered. It’s designed to be
placed on a modal dialog box.

Begin by creating a new form. Like the preceding example,
this form can be associated with an existing project, or it can
be a stand-alone form. Next, place onto this form the follow-
ing components: two Labels, two Edits, and two Buttons. Set
the Caption property of Label1 to Beginning Date, and the
Caption property of Label2 to Ending Date. Next, set the
Text property of both Edit components to a single blank
space. (Don’t set the Text property to an empty string; instead,
press s at least once.)

The Buttons are next. Set the Caption property of Button2 to
&Cancel, and the ModalResult property to mrCancel. Next, set
the Caption property of Button1 to &OK. The form should
look like Figure 4. Don’t set the ModalResult property of
Button1; the behavior of this button must be defined using an
event handler. To do this, double-click Button1 to create an
OnClick event handler for it. Modify as follows:

procedure TForm1.Button1Click(Sender: TObject);

var
bd, ed: TDateTime;

begin
bd := StrToDate(Edit1.Text);

ed := StrToDate(Edit2.Text);

if (bd > ed) then
raise Exception.Create(

'Ending date cannot precede beginning date');

Self.ModalResult := mrOK;

end;

Save the new component template; select Edit | Select All, then
select Component | Create Component Template. In the
Component Template Information dialog box, set the
Component name to DateRange, then select OK.

To test the new template, create a new project. Add a second
form to the project by selecting File | New Form. On the
newly created Form2, add the DateRange template. Return

Figure 5: The ShowMessage dialog box displays the
validated date range.

Figure 6: Entering an invalid date prompts this message.

Figure 7: Use the Palette page of the Environment Options dia-
log box to delete component templates.

DBNavigator
now to Form1, add a Button, then add the following event
handler to the button’s OnClick event handler:

procedure TForm1.Button1Click(Sender: TObject);

begin
if Form2.ShowModal = mrOK then

ShowMessage('Beginning date = ' + Form2.Edit1.Text +

', Ending date = ' + Form2.Edit2.Text)

else
ShowMessage('Form2 was cancelled');

end;

Finally, add Unit2 to Unit1’s uses clause by selecting File |

Use Unit, then double-clicking Unit2 on the Use Unit dialog
box. Now run the form. Click the button to display Form2
with the DateRange template on it. Enter a valid date range,
then click OK. Form1 displays the entered date range, as
shown in Figure 5. Now click the button again, and enter an
invalid value in one of the date fields. Selecting OK displays
the exception shown in Figure 6.

The code added to the component template was stored with
the template. This code, however, uses explicit references to
objects that are part of the template. Specifically, in the
DateRange template, the saved code refers to Edit1 and Edit2.
What happens when the form on which you place the tem-
plate already has an Edit1 or Edit2 component on it? The
answer is that the components of the template are renamed,
and the code in the template is updated.

Deleting Component Templates
Component templates, which are stored in the file
DELPHI32.DCT in Delphi’s \Bin directory, can easily be
deleted. To delete a component template, right-click the
Component palette and select Properties. Alternatively,
select Tools | Environment to display the Environment
Options dialog box, and select the Palette page. From the
displayed dialog box (see Figure 7), select Templates in the
34 December 1997 Delphi Informant
Pages listbox. Then select the component template you
want to delete in the Components listbox, and click Delete.

Component-Template Guidelines
While component templates are an important tool for rapid
application development in Delphi, they can easily be
overused. Avoid dependencies on components that aren’t part
of the template. For example, you might want to create a
template for a RichEdit toolbar, without the RichEdit control
being part of the template. This toolbar template, however,
requires that a RichEdit component be present, to compile
properly. If you must create dependent templates, be sure to
add comments to the code references in the template’s event
handlers, indicating which other objects are required by the
template, and what these components must be named.

If you use a particular component template a lot, consider turn-
ing it into a custom component. Templates do not support
inheritance, whereas true components do. Only published prop-
erties can be saved as part of a component template. If your com-
ponent must set properties that are not published, you’ll need to
create a true component. Also, note that not all published prop-
erties of a component template will be preserved. For example, a
component template based on a panel whose Caption property
has been set to an empty string will still be assigned a caption
when you place the template. This is because a panel’s caption is
controlled by the presence of the csSetCaption flag in the
ControlStyle property. (However, setting a Panel’s Caption to a
space will create a caption-less panel template.) ∆

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including Delphi In
Depth [Osborne/McGraw-Hill, 1996]. Cary is also a Contributing Editor of Delphi
Informant, and was a member of the Delphi Advisory Board for the 1997 Borland
Developers Conference. For information concerning Jensen Data Systems’ Delphi con-
sulting and training services, visit http://idt.net/~jdsi. You can also reach Jensen
Data Systems at (281) 359-3311, or via e-mail at cjensen@compuserve.com.

TextFile
Marco Cantù’s Mastering
Delphi [SYBEX, 1995] was
one of the first Delphi books I
bought. Despite its wide focus
and encyclopedic nature, I
found myself coming back to
it fairly often as a reference.
Like its predecessor, Mastering
Delphi 3 covers the Delphi
landscape in surprising detail.
It’s this that sets it apart from
so many other general intro-
ductory texts. For the same
reason, I expect to continue to
spend many additional hours
with this book as I explore
new areas of Delphi.
The book is organized into

four large sections. The first
chapter begins with building
forms. The more advanced
Delphi developers reading this
are probably thinking, “I
could skip all of that.”
However, there are useful tips
throughout the entire volume,
and you would be missing
some if you did.

Chapter two provides an
overview of the IDE, includ-
ing a comprehensive list of file
types that are part of Delphi,
from .BMP, .OCX, and .~DF
to .DPK with useful informa-
tion on each. Chapter three
introduces Delphi’s Object
Repository and built-in
Experts (Wizards). The
remaining chapters in the
introductory section deal with
Object Pascal and the VCL.
The coverage is quite detailed
with some unexpected topics.
For example, how many intro-
ductory references bother to
discuss procedural types and
method pointers? This one
does! On pages 180-182 there

Mastering Delphi 3
35 December 1997 Delphi Informant
is a discussion on another
rather advanced topic:
Windows callback functions.
Also within this section is an
excellent discussion of the vari-
ous types of strings available in
Delphi.

The second part is devoted
to using components, start-
ing with the simplest and
ending with a couple of
chapters on database compo-
nents. Again, Cantù will
delight you with his depth of
coverage. How much can
one write about using a sim-
ple button — a page or two?
Cantù takes about five pages
to demonstrate not only how
to place and align a button
(expected), but how to dis-
able/enable, enlarge, shrink,
hide, show, and change the
font of a button.

Data entry forms are
extremely common in
Windows programming.
Cantù devotes a lot of time
to discussing the components
used in data entry forms,
including at least one that’s
new in Delphi 3: the
DateTimePicker. Of course
there are in-depth discussions
on menus and toolbars, and
yes, even the famous (or is it
infamous?) CoolBar. In chap-
ter ten, which focuses on
forms and windows, Cantù
explains how to set a form’s
style, use the BorderStyle
property, avoid screen flicker,
and enable direct keyboard
input to a form.

Marco Cantù understands
and appreciates that program-
ming can be fun. (His popular
presentation at this year’s
Borland Developers
Conference in Nashville was
devoted to the fun side of
Delphi.) In this section, he
shows how to use a graphical
grid to write a simple
Windows game with Delphi;
toward the end of the book,
he presents a chapter on
Multimedia Fun.

Having devoted about a
third of the book to an exposi-
tion of Delphi components,
Cantù turns his attention to
more advanced topics in part
three, “Components and
Libraries.” The first two chap-
ters provide an introduction to
writing components, compo-
nent and property editors, and
experts. These are followed by
chapters on DLLs, OLE,
COM, ActiveX controls, and
Internet programming.
The final section of the book

is entitled “Advanced Delphi
Programming.” I’m not con-
vinced the topics presented
here are more advanced than
some in the previous section,
but every one of them is
important. Among the clearly
advanced topics, the one on
threads and multitasking is
probably the best introduction
I’ve seen — and I’ve seen
some good ones. While I
wouldn’t consider the chapter
on printing in Delphi to be
particularly advanced, I did
find it useful and comprehen-
sive. Likewise, the chapter on
working with files provides an
excellent introduction to
working with Delphi streams.
However, you’ll probably want
to read what Ray Lischner has
to say about this topic in
Secrets of Delphi 2 [Waite
Group Press, 1996] before try-
ing anything too fancy!
Though it may seem I have

written a lot of detailed infor-
mation about Cantù’s excel-
lent book, I’ve only scratched
the surface. From beginning to
end, it’s packed with useful
tips, information about new
features, and warnings about
traps in the different versions
of Delphi. For once, I agree
with the publisher that this
book is truly appropriate for
all levels of Delphi program-
mers. I would particularly rec-
ommend it to someone just
getting started with Delphi, or
who is moving to Delphi 3
from an earlier version. Of all
the general Delphi references,
I think Marco Cantù’s
Mastering Delphi 3 is the best
written and the most compre-
hensive.

— Alan C. Moore, Ph.D.

Mastering Delphi 3 by Marco
Cantù, SYBEX, 1151 Marina
Village Parkway, Alameda, CA
94501, (510) 523-8233.
ISBN: 0-7821-2052-0
Price: US$49.99
(1,476 pages, CD-ROM)

File | New
Directions / Commentary
Searching for Our Industry’s Soul

Irecently came across an online Salon 21st article by Jennifer New (http://www.salonmagazine.com/-
sept97/21st/gates970925.html) about her unhappy experiences working as a contractor for Microsoft.

Jennifer tells tale after tale of the arrogance, cold-heartedness, and, frankly, amoral attitudes of many
Microsoft employees. One anecdote captures the heart of her story when she describes greeting an individ-
ual in the hallway and having him respond: “Do I need to know you?” After reflecting on this, I asked
myself whether this situation is unique to Microsoft, or does it reflect our software industry as a whole?
While perhaps this attitude peaks in Redmond, it seems that when you look for the “soul” in our high-tech
culture, it’s hard to find.
To begin, we in the software industry
are often arrogant. Part of this is due to
the composition of the software devel-
oper community, made up largely of
young, highly educated, well paid, and
self-motivated individuals. While none
of these qualities are bad, if left
unchecked — and mixed with a large
ego — they can lead to a feeling of
invincibility and superiority. The
extreme success the software industry
has had over the past 10-15 years has
surely helped facilitate a feeling of
haughtiness. What other industry has
produced so many millionaires under
30 years of age? Part of this arrogance is
due to the “heroes” of our trade; names
such as Bill Gates, Larry Ellison, Steve
Jobs, and Phillipe Kahn don’t ring of
humility. Sadly, once considered a vice,
“pride” is now considered a virtue.
Somehow we have substituted “ego” for
“self-confidence,” the result of which
inevitably leads to this arrogance.

Let’s face it: The software industry is
amoral. While you could say this about
society as a whole, I believe this attitude
reaches a zenith within our cyberculture.
Ruthlessness and Machiavellian princi-
ples are usually considered prerequisites
to achieving success in high tech.
36 December 1997 Delphi Informant
Decency tends to be equated with weak-
ness, or even prudishness, and morality
is left to personal interpretation.

A prime example of this “cybermorali-
ty” is Web pornography. Not only is its
use widespread, it’s sometimes even glo-
rified by our digital culture in the name
of free speech. In fact, I have yet to see
anyone in our industry dare speak
against the shortcomings of the Blue
Ribbon campaign or address the impact
pornography has on individuals.
Somehow in our zeal for free speech,
we’ve forgotten that responsibility must
accompany that freedom. Dr Alan
Keyes expresses this belief in Our
Character, Our Future [Zondervan,
1996]: “Freedom requires that at the
end of the day, we accept the constraint
that is required.” Our cybermorality
rejects such constraints and dismisses
any notion of “absolutes” apart from an
individual.

You may be asking “so what?” What
does this have to do with us? I think it
points to the heart of the issue. Our
cyberculture, which is largely influ-
enced by the high-tech industry and
digital media, has created a vacuum
within which anything can propagate
without anyone ever asking if it’s
right, decent, or good for the commu-
nity at large.

Are all of us in the high-tech industry
arrogant, cold-hearted, and amoral? Of
course not. I know many software engi-
neers and media professionals who have
integrity and who are decent, humble,
and respectful of their co-workers. I
hope many of you would classify your-
selves in that vein. But if we all think of
ourselves that way, why is our industry
known for producing clones of Bill
Gates instead of Mother Teresa? Why
are qualities like decency and humility
often ridiculed? Why are greed and
ruthlessness admired? Until such atti-
tudes change, our industry will remain
without a soul.

Does the software industry have a “soul?”
Let me know what you think by writing
me at rwagner@acadians.com. ∆

— Richard Wagner

Richard Wagner is Chief Technology
Officer of Acadia Software in the Boston,
MA area, and Contributing Editor to
Delphi Informant. He welcomes your
comments at rwagner@acadians.com.

	Table of Contents
	Symposium
	In the Beginning ...
	On the Horizon

	Delphi Tools
	Cyrenesoft Announces Database Component Set for Delphi
	Parity Software Announces ChatterBocx/SAPI
	Mountaintop Systems Releases Remember All Suite Comprising
	Digital Zinnia Studios and Modern Medium Inc. Announce Conduit
	HyperAct Ships WebApp 1.0
	SupraSoft Offers Crystal Reports Support
	CoStar Introduces Developers Kit
	Book for Sale

	Delphi News
	Borland, MicroEdge Announce Visual SlickEdit - Delphi Edition
	Borland Strategies Announced at Microsoft Professional Developers Conference
	MCBA, Inc. Joins Borland’s Partner/400 Program
	Borland Announces Borland DataGateway for Java

	On the Cover
	A War Story
	Keep It Simple
	An Illustration
	Modal Oops
	A New Thread
	Action
	Set Your Priorities
	Last Thread
	Listing One
	Listing Two

	On the Net
	Real-World Applications
	Overview of Sockets
	The Socket Programming Interface
	Serializing Sockets
	FTP Overview
	Command Processing
	Data Connections
	Testing HsSocket
	Conclusion
	Listing Three
	Listing Four

	Sights & Sounds
	Enhancing TShape
	The ObjDraw Program
	Listening to Messages
	Creating the Shape
	A Few Extras
	Saving and Retrieving the Shapes
	Conclusion
	Listing Five

	The API Calls
	Using Paradox Tables on Read-Only Media
	Using Persistent Locks as Semaphores
	Getting a List of Network Users
	Sorting Local Tables
	Editing the BDE Configuration File
	Further Investigation
	Listing Six

	DBNavigator
	Creating Templates with Event Handlers
	Deleting Component Templates
	Component-Template Guidelines

	TextFile
	File I New

